Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 14(10): 2058-2067, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37859712

RESUMO

Emerging cell-based therapies such as CAR-T (Chimeric Antigen Receptor T) cells require cryopreservation to store and deliver intact and viable cells. Conventional cryopreservation formulations use DMSO to mitigate cold-induced damage, but do not address all the biochemical damage mechanisms induced by cold stress, such as programmed cell death (apoptosis). Rho-associated protein kinases (ROCK) are a key component of apoptosis, and their activation contributes to apoptotic blebbing. Here we demonstrate that the ROCK inhibitor fasudil hydrochloride, when supplemented into the thawing medium of T-cells increases the overall yield of healthy cells. Cell yield was highest using 5 or 10% DMSO cryopreservation solutions, with lower DMSO concentrations (2.5%) leading to significant physical damage to the cells. After optimisation, the post-thaw yield of T-cells increased by approximately 20% using this inhibitor, a significant increase in the context of a therapy. Flow cytometry analysis did not show a significant reduction in the relative percentage of cell populations undergoing apoptosis, but there was a small reduction in the 8 hours following thawing. Fasudil also led to a reduction in reactive oxygen species. Addition of fasudil into the cryopreservation solution, followed by dilution (rather than washing) upon thaw also gave a 20% increase in cell yield, demonstrating how this could be deployed in a cell-therapy context, without needing to change clinical thawing routines. Overall, this shows that modulation of post-thaw biochemical pathways which lead to apoptosis (or other degradative pathways) can be effectively targeted as a strategy to increase T-cell yield and function post-thaw.

2.
ACS Polym Au ; 2(6): 449-457, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36536886

RESUMO

Conventional cryopreservation solutions rely on the addition of organic solvents such as DMSO or glycerol, but these do not give full recovery for all cell types, and innovative cryoprotectants may address damage pathways which these solvents do not protect against. Macromolecular cryoprotectants are emerging, but there is a need to understand their structure-property relationships and mechanisms of action. Here we synthesized and investigated the cryoprotective behavior of sulfoxide (i.e., "DMSO-like") side-chain polymers, which have been reported to be cryoprotective using poly(ethylene glycol)-based polymers. We also wanted to determine if the polarized sulfoxide bond (S+O- character) introduces cryoprotective effects, as this has been seen for mixed-charge cryoprotective polyampholytes, whose mechanism of action is not yet understood. Poly(2-(methylsulfinyl)ethyl methacrylate) was synthesized by RAFT polymerization of 2-(methylthio)ethyl methacrylate and subsequent oxidation to sulfoxide. A corresponding N-oxide polymer was also prepared and characterized: (poly(2-(dimethylamineoxide)ethyl methacrylate). Ice recrystallization inhibition assays and differential scanning calorimetry analysis show that the sulfoxide side chains do not modulate the frozen components during cryopreservation. In cytotoxicity assays, it was found that long-term (24 h) exposure of the polymers was not tolerated by cells, but shorter (30 min) incubation times, which are relevant for cryopreservation, were tolerated. It was also observed that overoxidation to the sulfone significantly increased the cytotoxicity, and hence, these materials require a precision oxidation step to be deployed. In suspension cell cryopreservation investigations, the polysulfoxides did not increase cell recovery 24 h post-thaw. These results show that unlike hydrophilic backboned polysulfides, which can aid cryopreservation, the installation of the sulfoxide group onto a polymer does not necessarily bring cryoprotective properties, highlighting the challenges of developing and discovering macromolecular cryoprotectants.

3.
ACS Macro Lett ; 11(7): 889-894, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35766585

RESUMO

Macromolecular cryoprotectants based on polyampholytes are showing promise as supplemental cryoprotectants alongside conventional DMSO-based freezing. Here we exploit radical ring-opening (ter)polymerization to access ester-containing cryoprotective polyampholytes, which were shown to be degradable. Using a challenging cell monolayer cryopreservation model, the degradable polyampholytes were found to enhance post-thaw recovery when supplemented into DMSO. This demonstrates that degradable macromolecular cryoprotectants can be developed for application in biotechnology and biomedicine.


Assuntos
Criopreservação , Dimetil Sulfóxido , Crioprotetores/farmacologia , Congelamento , Polimerização
4.
F1000Res ; 6: 2073, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30345000

RESUMO

The direct link between lipid metabolism alterations and the increase of cardiovascular risk are well documented. Dyslipidemias, including isolated high LDL-c or mixed dyslipidemia, such as those seen in diabetes (hypertriglyceridemia, high LDL-c or low HDL-c), correlate with a significant risk of cardiovascular and cerebrovascular disease worldwide.  This review analyzes the current knowledge concerning the genetic basis of lipid metabolism alterations, emphasizing lipoprotein lipase gene mutations and the HindIII polymorphism, which are associated with decreased levels of triglycerides and LDL-c, as well as higher levels of HDL-c. These patterns would be associated with decreased global morbidity and mortality, providing protection against cardiovascular and cerebrovascular diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...