Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 95(6): e28878, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37322614

RESUMO

Monkeypox (MPOX) is a zoonotic disease that affects humans and other primates, resulting in a smallpox-like illness. It is caused by monkeypox virus (MPXV), which belongs to the Poxviridae family. Clinically manifested by a range of cutaneous and systemic findings, as well as variable disease severity phenotypes based on the genetic makeup of the virus, the cutaneous niche and respiratory mucosa are the epicenters of MPXV pathogenicity. Herein, we describe the ultrastructural features of MPXV infection in both human cultured cells and cutaneous clinical specimens collected during the 2022-2023 MPOX outbreak in New York City that were revealed through electron microscopy. We observed typical enveloped virions with brick-shaped morphologies that contained surface protrusions, consistent with the classic ultrastructural features of MPXV. In addition, we describe morpho-functional evidence that point to roles of distinct cellular organelles in viral assembly during clinical MPXV infection. Interestingly, in skin lesions, we found abundant melanosomes near viral assembly sites, particularly in the vicinity of mature virions, which provides further insight into virus-host interactions at the subcellular level that contribute to MPXV pathogenesis. These findings not only highlight the importance of electron microscopic studies for further investigation of this emerging pathogen but also in characterizing MPXV pathogenesis during human infection.


Assuntos
Mpox , Dermatopatias , Animais , Humanos , Monkeypox virus/genética , Virulência , Primatas , Genômica
2.
Cell Rep Med ; 4(6): 101079, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37327781

RESUMO

The IMPACC cohort, composed of >1,000 hospitalized COVID-19 participants, contains five illness trajectory groups (TGs) during acute infection (first 28 days), ranging from milder (TG1-3) to more severe disease course (TG4) and death (TG5). Here, we report deep immunophenotyping, profiling of >15,000 longitudinal blood and nasal samples from 540 participants of the IMPACC cohort, using 14 distinct assays. These unbiased analyses identify cellular and molecular signatures present within 72 h of hospital admission that distinguish moderate from severe and fatal COVID-19 disease. Importantly, cellular and molecular states also distinguish participants with more severe disease that recover or stabilize within 28 days from those that progress to fatal outcomes (TG4 vs. TG5). Furthermore, our longitudinal design reveals that these biologic states display distinct temporal patterns associated with clinical outcomes. Characterizing host immune responses in relation to heterogeneity in disease course may inform clinical prognosis and opportunities for intervention.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Estudos Longitudinais , Multiômica , Progressão da Doença
3.
Emerg Infect Dis ; 29(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37054986

RESUMO

Since late 2020, SARS-CoV-2 variants have regularly emerged with competitive and phenotypic differences from previously circulating strains, sometimes with the potential to escape from immunity produced by prior exposure and infection. The Early Detection group is one of the constituent groups of the US National Institutes of Health National Institute of Allergy and Infectious Diseases SARS-CoV-2 Assessment of Viral Evolution program. The group uses bioinformatic methods to monitor the emergence, spread, and potential phenotypic properties of emerging and circulating strains to identify the most relevant variants for experimental groups within the program to phenotypically characterize. Since April 2021, the group has prioritized variants monthly. Prioritization successes include rapidly identifying most major variants of SARS-CoV-2 and providing experimental groups within the National Institutes of Health program easy access to regularly updated information on the recent evolution and epidemiology of SARS-CoV-2 that can be used to guide phenotypic investigations.


Assuntos
COVID-19 , SARS-CoV-2 , Estados Unidos/epidemiologia , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , National Institutes of Health (U.S.)
4.
Emerg Infect Dis ; 29(4): 786-791, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958010

RESUMO

We report the spillover of highly pathogenic avian influenza A(H5N1) into marine mammals in the northeastern United States, coincident with H5N1 in sympatric wild birds. Our data indicate monitoring both wild coastal birds and marine mammals will be critical to determine pandemic potential of influenza A viruses.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Focas Verdadeiras , Animais , Influenza Aviária/epidemiologia , Aves , Surtos de Doenças , Animais Selvagens , New England/epidemiologia
5.
Emerg Microbes Infect ; 12(1): e2192830, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36927408

RESUMO

Monkeypox (MPOX) is a zoonotic disease endemic to regions of Central/Western Africa. The geographic endemicity of MPV has expanded, broadening the human-monkeypox virus interface and its potential for spillover. Since May 2022, a large multi-country MPV outbreak with no proven links to endemic countries has originated in Europe and has rapidly expanded around the globe, setting off genomic surveillance efforts. Here, we conducted a genomic analysis of 23 MPV-infected patients from New York City during the early outbreak, assessing the phylogenetic relationship of these strains against publicly available MPV genomes. Additionally, we compared the genomic sequences of clinical isolates versus culture-passaged samples from a subset of samples. Phylogenetic analysis revealed that MPV genomes included in this study cluster within the B.1 lineage (Clade IIb), with some of the samples displaying further differentiation into five different sub-lineages of B.1. Mutational analysis revealed 55 non-synonymous polymorphisms throughout the genome, with some of these mutations located in critical regions required for viral multiplication, structural and assembly functions, as well as the target region for antiviral treatment. In addition, we identified a large majority of polymorphisms associated with GA > AA and TC > TT nucleotide replacements, suggesting the action of human APOBEC3 enzyme. A comparison between clinical isolates and cell culture-passaged samples failed to reveal any difference. Our results provide a first glance at the mutational landscape of early MPV-2022 (B.1) circulating strains in NYC.


Assuntos
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Filogenia , Cidade de Nova Iorque/epidemiologia , Mpox/epidemiologia , Surtos de Doenças
6.
Viruses ; 15(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36851697

RESUMO

Wild aquatic birds are considered the natural hosts of 16 HA (H1-H16) and 9 NA (N1-N9) subtypes of influenza A viruses (FLUAV) found in different combinations. H14 FLUAVs are rarely detected in nature. Since 2011, H14 FLUAVs have been consistently detected in Guatemala, leading to the largest collection of this subtype from a single country. All H14 FLUAVs in Guatemala were detected from blue-winged teal samples. In this report, 17 new full-length H14 FLUAV genome sequences detected from 2014 until 2019 were analyzed and compared to all published H14 sequences, including Guatemala, North America, and Eurasia. The H14 FLUAVs identified in Guatemala were mostly associated with the N3 subtype (n = 25), whereas the rest were paired with either N4 (n = 7), N5 (n = 4), N6 (n = 1), and two mixed infections (N3/N5 n = 2, and N2/N3 n = 1). H14 FLUAVs in Guatemala belong to a distinct H14 lineage in the Americas that is evolving independently from the Eurasian H14 lineage. Of note, the ORF of the H14 HA segments showed three distinct motifs at the cleavage site, two of these containing arginine instead of lysine in the first and fourth positions, not previously described in other countries. The effects of these mutations on virus replication, virulence, and/or transmission remain unknown and warrant further studies.


Assuntos
Patos , Vírus da Influenza A , Animais , Guatemala , Ecologia , Arginina , Vírus da Influenza A/genética
7.
Microbiol Spectr ; 11(1): e0287822, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36475876

RESUMO

Commercial swine farms provide unique systems for interspecies transmission of influenza A viruses (FLUAVs) at the animal-human interface. Bidirectional transmission of FLUAVs between pigs and humans plays a significant role in the generation of novel strains that become established in the new host population. Active FLUAV surveillance was conducted for 2 years on a commercial pig farm in Southern Guatemala with no history of FLUAV vaccination. Nasal swabs (n = 2,094) from fattening pigs (6 to 24 weeks old) with respiratory signs were collected weekly from May 2016 to February 2018. Swabs were screened for FLUAV by real-time reverse transcriptase PCR (RRT-PCR), and full virus genomes of FLUAV-positive swabs were sequenced by next-generation sequencing (NGS). FLUAV prevalence was 12.0% (95% confidence interval [CI], 10.6% to 13.4%) with two distinct periods of high infection. All samples were identified as FLUAVs of the H1N1 subtype within the H1 swine clade 1A.3.3.2 and whose ancestors are the human origin 2009 H1N1 influenza pandemic virus (H1N1 pdm09). Compared to the prototypic reference segment sequence, 10 amino acid signatures were observed on relevant antigenic sites on the hemagglutinin. The Guatemalan swine-origin FLUAVs show independent evolution from other H1N1 pdm09 FLUAVs circulating in Central America. The zoonotic risk of these viruses remains unknown but strongly calls for continued FLUAV surveillance in pigs in Guatemala. IMPORTANCE Despite increased surveillance efforts, the epidemiology of FLUAVs circulating in swine in Latin America remains understudied. For instance, the 2009 H1N1 influenza pandemic strain (H1N1 pdm09) emerged in Mexico, but its circulation remained undetected in pigs. In Central America, Guatemala is the country with the largest swine industry. We found a unique group of H1N1 pdm09 sequences that suggests independent evolution from similar viruses circulating in Central America. These viruses may represent the establishment of a novel genetic lineage with the potential to reassort with other cocirculating viruses and whose zoonotic risk remains to be determined.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Humanos , Animais , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/epidemiologia , Fazendas , Guatemala/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/epidemiologia , Filogenia
8.
Nature ; 605(7911): 640-652, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35361968

RESUMO

The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Evolução Biológica , Vacinas contra COVID-19 , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemias/prevenção & controle , Variantes Farmacogenômicos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Estados Unidos/epidemiologia , Virulência
9.
Nature ; 603(7902): 687-692, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35062015

RESUMO

The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Assuntos
COVID-19/patologia , COVID-19/virologia , Modelos Animais de Doenças , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Cricetinae , Feminino , Humanos , Pulmão/patologia , Pulmão/virologia , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Carga Viral
10.
Nature ; 602(7898): 682-688, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016197

RESUMO

The Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially identified in November 2021 in South Africa and Botswana, as well as in a sample from a traveller from South Africa in Hong Kong1,2. Since then, Omicron has been detected globally. This variant appears to be at least as infectious as Delta (B.1.617.2), has already caused superspreader events3, and has outcompeted Delta within weeks in several countries and metropolitan areas. Omicron hosts an unprecedented number of mutations in its spike gene and early reports have provided evidence for extensive immune escape and reduced vaccine effectiveness2,4-6. Here we investigated the virus-neutralizing and spike protein-binding activity of sera from convalescent, double mRNA-vaccinated, mRNA-boosted, convalescent double-vaccinated and convalescent boosted individuals against wild-type, Beta (B.1.351) and Omicron SARS-CoV-2 isolates and spike proteins. Neutralizing activity of sera from convalescent and double-vaccinated participants was undetectable or very low against Omicron compared with the wild-type virus, whereas neutralizing activity of sera from individuals who had been exposed to spike three or four times through infection and vaccination was maintained, although at significantly reduced levels. Binding to the receptor-binding and N-terminal domains of the Omicron spike protein was reduced compared with binding to the wild type in convalescent unvaccinated individuals, but was mostly retained in vaccinated individuals.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/virologia , Convalescença , Evasão da Resposta Imune/imunologia , Soros Imunes/imunologia , SARS-CoV-2/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Adulto , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , COVID-19/transmissão , Feminino , Humanos , Imunização Secundária , Modelos Moleculares , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
11.
EBioMedicine ; 73: 103626, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34688034

RESUMO

BACKGROUND: Highly efficacious vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed. However, the emergence of viral variants that are more infectious than the earlier SARS-CoV-2 strains is concerning. Several of these viral variants have the potential to partially escape neutralizing antibody responses, warranting continued immune-monitoring. METHODS: We used a panel of 30 post-mRNA vaccination sera to determine neutralization and RBD and spike binding activity against a number of emerging viral variants. The virus neutralization was determined using authentic SARS-CoV-2 clinical isolates in an assay format that mimics physiological conditions. FINDINGS: We tested seven currently circulating viral variants of concern/interest, including the three Iota sublineages, Alpha (E484K), Beta, Delta and Lambda in neutralization assays. We found only small decreases in neutralization against Iota and Delta. The reduction was stronger against a sub-variant of Lambda, followed by Beta and Alpha (E484K). Lambda is currently circulating in parts of Latin America and was detected in Germany, the US and Israel. Of note, reduction in a receptor binding domain and spike binding assay that also included Gamma, Kappa and A.23.1 was negligible. INTERPRETATION: Taken together, these findings suggest that mRNA SARS-CoV-2 vaccines may remain effective against these viral variants of concern/interest and that spike binding antibody tests likely retain specificity in the face of evolving SARS-CoV-2 diversity. FUNDING: This work is part of the PARIS/SPARTA studies funded by the NIAID Collaborative Influenza Vaccine Innovation Centers (CIVIC) contract 75N93019C00051. In addition, this work was also partially funded by the Centers of Excellence for Influenza Research and Surveillance (CEIRS, contract # HHSN272201400008C), the JPB Foundation, the Open Philanthropy Project (research grant 2020-215611 (5384), by anonymous donors and by the Serological Sciences Network (SeroNet) in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. 75N91019D00024, Task Order No. 75N91020F00003.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/administração & dosagem , Reações Antígeno-Anticorpo , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Testes de Neutralização , Filogenia , Domínios Proteicos/imunologia , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Vacinas de mRNA
12.
Ecol Evol ; 9(11): 6534-6546, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31236242

RESUMO

ABSTRACT: The greatest diversity of influenza A virus (IAV) is found in wild aquatic birds of the orders Anseriformes and Charadriiformes. In these birds, IAV replication occurs mostly in the intestinal tract. Fecal, cloacal, and/or tracheal swabs are typically collected and tested by real-time RT-PCR (rRT-PCR) and/or by virus isolation in embryonated chicken eggs in order to determine the presence of IAV. Virus isolation may impose bottlenecks that select variant populations that are different from those circulating in nature, and such bottlenecks may result in artifactual representation of subtype diversity and/or underrepresented mixed infections. The advent of next-generation sequencing (NGS) technologies provides an opportunity to explore to what extent IAV subtype diversity is affected by virus isolation in eggs. In the present work, we evaluated the advantage of sequencing by NGS directly from swab material of IAV rRT-PCR-positive swabs collected during the 2013-14 surveillance season in Guatemala and compared to results from NGS after virus isolation. The results highlight the benefit of sequencing IAV genomes directly from swabs to better understand subtype diversity and detection of alternative amino acid motifs that could otherwise escape detection using traditional methods of virus isolation. In addition, NGS sequencing data from swabs revealed reduced presence of defective interfering particles compared to virus isolates. We propose an alternative workflow in which original swab samples positive for IAV by rRT-PCR are first subjected to NGS before attempting viral isolation. This approach should speed the processing of samples and better capture natural IAV diversity. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.3h2n106.

13.
Methods Mol Biol ; 1602: 251-273, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28508225

RESUMO

Influenza A viruses have broad host range with a recognized natural reservoir in wild aquatic birds. From this reservoir, novel strains occasionally emerge with the potential to establish stable lineages in other avian and mammalian species, including humans. Understanding the molecular changes that allow influenza A viruses to change host range is essential to better assess their animal and public health risks. Reverse genetics systems have transformed the ability to manipulate and study negative strand RNA viruses. In the particular case of influenza A viruses, plasmid-based reverse genetics approaches have allowed for a better understanding of, among others, virulence, transmission, mechanisms of antiviral resistance, and the development of alternative vaccines and vaccination strategies. In this chapter we describe the cloning of cDNA copies of viral RNA segments derived from a type A influenza virus into reverse genetics plasmid vectors and the experimental procedures for the successful generation of recombinant influenza A viruses.


Assuntos
Vírus da Influenza A/genética , Plasmídeos/genética , Genética Reversa , Animais , Linhagem Celular , Clonagem Molecular , DNA Complementar , Expressão Gênica , Vetores Genéticos/genética , Genoma Viral , Humanos , RNA Viral , Recombinação Genética , Genética Reversa/métodos , Transfecção , Replicação Viral
14.
J Virol ; 91(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28381580

RESUMO

Influenza B virus (IBV) is considered a major human pathogen, responsible for seasonal epidemics of acute respiratory illness. Two antigenically distinct IBV hemagglutinin (HA) lineages cocirculate worldwide with little cross-reactivity. Live attenuated influenza virus (LAIV) vaccines have been shown to provide better cross-protective immune responses than inactivated vaccines by eliciting local mucosal immunity and systemic B cell- and T cell-mediated memory responses. We have shown previously that incorporation of temperature-sensitive (ts) mutations into the PB1 and PB2 subunits along with a modified HA epitope tag in the C terminus of PB1 resulted in influenza A viruses (IAV) that are safe and effective as modified live attenuated (att) virus vaccines (IAV att). We explored whether analogous mutations in the IBV polymerase subunits would result in a stable virus with an att phenotype. The PB1 subunit of the influenza B/Brisbane/60/2008 strain was used to incorporate ts mutations and a C-terminal HA tag. Such modifications resulted in a B/Bris att strain with ts characteristics in vitro and an att phenotype in vivo Vaccination studies in mice showed that a single dose of the B/Bris att candidate stimulated sterilizing immunity against lethal homologous challenge and complete protection against heterologous challenge. These studies show the potential of an alternative LAIV platform for the development of IBV vaccines.IMPORTANCE A number of issues with regard to the effectiveness of the LAIV vaccine licensed in the United States (FluMist) have arisen over the past three seasons (2013-2014, 2014-2015, and 2015-2016). While the reasons for the limited robustness of the vaccine-elicited immune response remain controversial, this problem highlights the critical importance of continued investment in LAIV development and creates an opportunity to improve current strategies so as to develop more efficacious vaccines. Our laboratory has developed an alternative strategy, the incorporation of 2 amino acid mutations and a modified HA tag at the C terminus of PB1, which is sufficient to attenuate the IBV. As a LAIV, this novel vaccine provides complete protection against IBV strains. The availability of attenuated IAV and IBV backbones based on contemporary strains offers alternative platforms for the development of LAIVs that may overcome current limitations.


Assuntos
Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Aminoácidos/genética , Animais , Variação Antigênica/genética , Variação Antigênica/imunologia , Genoma Viral , Humanos , Imunidade Humoral , Vírus da Influenza B/enzimologia , Vacinas contra Influenza/genética , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Mutação , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Linfócitos T/imunologia , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/imunologia
15.
Nat Biotechnol ; 31(9): 844-847, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23934176

RESUMO

Recent gain-of-function studies in influenza A virus H5N1 strains revealed that as few as three-amino-acid changes in the hemagglutinin protein confer the capacity for viral transmission between ferrets. As transmission between ferrets is considered a surrogate indicator of transmissibility between humans, these studies raised concerns about the risks of gain-of-function influenza A virus research. Here we present an approach to strengthen the biosafety of gain-of-function influenza experiments. We exploit species-specific endogenous small RNAs to restrict influenza A virus tropism. In particular, we found that the microRNA miR-192 was expressed in primary human respiratory tract epithelial cells as well as in mouse lungs but absent from the ferret respiratory tract. Incorporation of miR-192 target sites into influenza A virus did not prevent influenza replication and transmissibility in ferrets, but did attenuate influenza pathogenicity in mice. This molecular biocontainment approach should be applicable beyond influenza A virus to minimize the risk of experiments involving other pathogenic viruses.


Assuntos
Pesquisa Biomédica , Virus da Influenza A Subtipo H5N1 , MicroRNAs , Virologia , Animais , Pesquisa Biomédica/métodos , Pesquisa Biomédica/normas , Peso Corporal , Furões , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Infecções por Orthomyxoviridae/virologia , Gestão de Riscos , Análise de Sobrevida , Tropismo Viral/genética , Virologia/métodos , Virologia/normas , Replicação Viral/genética
16.
Methods Mol Biol ; 630: 109-24, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20300994

RESUMO

West Nile virus (WNV) is an emerging mosquito-borne flavivirus, which has rapidly spread and is currently widely distributed. Therefore, efforts for WNV early detection and ecological surveillance of this disease agent have been increased around the world. Although virus isolation is known to be the standard method for detection and identification of viruses, the use of RT-PCR assays as routine laboratory tests provides a rapid alterative suitable for the detection of viral RNA on field-collected samples. A method for WNV RNA genome detection in field-collected mosquitoes is presented in this chapter. This method has been designed for virus surveillance in tropical regions endemic for other flaviviruses. Reverse Transcriptase-PCR (RT-PCR) assays, both standard and real time, to detect WNV and other flaviviruses are described. A first screening for flavivirus RNA detection is performed using a conventional RT-PCR with two different sets of flavivirus consensus primers. Mosquito samples are then tested for WNV RNA by a real-time (TaqMan) RT-PCR assay. Sample preparation and RNA extraction procedures are also described.


Assuntos
Culicidae/virologia , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Culicidae/genética , Primers do DNA , Flavivirus/genética , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/instrumentação , Clima Tropical , Vírus do Nilo Ocidental/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...