Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Brain Behav ; 13(6): e3031, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37157915

RESUMO

INTRODUCTION: Traumatic brain injury (TBI) is a public health concern with limited treatment options because it causes a cascade of side effects that are the leading cause of hospital death. Thioredoxin is an enzyme with neuroprotective properties such as antioxidant, antiapoptotic, immune response modulator, and neurogenic, among others; it has been considered a therapeutic target for treating many disorders. METHODS: The controlled cortical impact (CCI) model was used to assess the effect of recombinant human thioredoxin 1 (rhTrx1) (1 µg/2 µL, intracortical) on rats subjected to TBI at two different times of the light-dark cycle (01:00 and 13:00 h). We analyzed the food intake, body weight loss, motor coordination, pain perception, and histology in specific hippocampus (CA1, CA2, CA3, and Dental Gyrus) and striatum (caudate-putamen) areas. RESULTS: Body weight loss, reduced food intake, spontaneous pain, motor impairment, and neuronal damage in specific hippocampus and striatum regions are more evident in rats subjected to TBI in the light phase than in the dark phase of the cycle and in groups that did not receive rhTrx1 or minocycline (as positive control). Three days after TBI, there is a recovery in body weight, food intake, motor impairment, and pain, which is more pronounced in the rats subjected to TBI at the dark phase of the cycle and those that received rhTrx1 or minocycline. CONCLUSIONS: Knowing the time of day a TBI occurs in connection to the neuroprotective mechanisms of the immune response in diurnal variation and the usage of the Trx1 protein might have a beneficial therapeutic impact in promoting quick recovery after a TBI.


Assuntos
Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Humanos , Ratos , Animais , Minociclina/uso terapêutico , Lesões Encefálicas Traumáticas/metabolismo , Hipocampo/metabolismo , Tiorredoxinas/farmacologia , Tiorredoxinas/metabolismo , Tiorredoxinas/uso terapêutico , Redução de Peso , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças
2.
Proc Natl Acad Sci U S A ; 114(36): 9731-9736, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827363

RESUMO

When food resources are scarce, endothermic animals can lower core body temperature (Tb). This phenomenon is believed to be part of an adaptive mechanism that may have evolved to conserve energy until more food becomes available. Here, we found in the mouse that the insulin-like growth factor 1 receptor (IGF-1R) controls this response in the central nervous system. Pharmacological or genetic inhibition of IGF-1R enhanced the reduction of temperature and of energy expenditure during calorie restriction. Full blockade of IGF-1R affected female and male mice similarly. In contrast, genetic IGF-1R dosage was effective only in females, where it also induced transient and estrus-specific hypothermia in animals fed ad libitum. These effects were regulated in the brain, as only central, not peripheral, pharmacological activation of IGF-1R prevented hypothermia during calorie restriction. Targeted IGF-1R knockout selectively in forebrain neurons revealed that IGF signaling also modulates calorie restriction-dependent Tb regulation in regions rostral of the canonical hypothalamic nuclei involved in controlling body temperature. In aggregate, these data identify central IGF-1R as a mediator of the integration of nutrient and temperature homeostasis. They also show that calorie restriction, IGF-1R signaling, and body temperature, three of the main regulators of metabolism, aging, and longevity, are components of the same pathway.


Assuntos
Restrição Calórica/efeitos adversos , Hipotermia/fisiopatologia , Receptor IGF Tipo 1/fisiologia , Envelhecimento/fisiologia , Animais , Metabolismo Energético/fisiologia , Feminino , Dosagem de Genes , Homeostase/fisiologia , Hipotermia/etiologia , Hipotermia/prevenção & controle , Longevidade/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/genética , Caracteres Sexuais , Transdução de Sinais/fisiologia
3.
Int J Mol Sci ; 15(4): 5807-20, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24714089

RESUMO

Cathepsin B is one of the major lysosomal cysteine proteases involved in neuronal protein catabolism. This cathepsin is released after traumatic injury and increases neuronal death; however, release of cystatin C, a cathepsin inhibitor, appears to be a self-protective brain response. Here we describe the effect of cystatin C intracerebroventricular administration in rats prior to inducing a traumatic brain injury. We observed that cystatin C injection caused a dual response in post-traumatic brain injury recovery: higher doses (350 fmoles) increased bleeding and mortality, whereas lower doses (3.5 to 35 fmoles) decreased bleeding, neuronal damage and mortality. We also analyzed the expression of cathepsin B and cystatin C in the brains of control rats and of rats after a traumatic brain injury. Cathepsin B was detected in the brain stem, cerebellum, hippocampus and cerebral cortex of control rats. Cystatin C was localized to the choroid plexus, brain stem and cerebellum of control rats. Twenty-four hours after traumatic brain injury, we observed changes in both the expression and localization of both proteins in the cerebral cortex, hippocampus and brain stem. An early increase and intralysosomal expression of cystatin C after brain injury was associated with reduced neuronal damage.


Assuntos
Lesões Encefálicas/mortalidade , Lesões Encefálicas/patologia , Catepsina B/biossíntese , Cistatina C/farmacologia , Animais , Apoptose , Tronco Encefálico/metabolismo , Catepsina B/metabolismo , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Plexo Corióideo/metabolismo , Cistatina C/biossíntese , Hemorragia/induzido quimicamente , Hipocampo/metabolismo , Masculino , Neurônios/patologia , Ratos , Ratos Wistar
4.
Int J Mol Sci ; 14(12): 23341-55, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24287910

RESUMO

The endocannabinoid system is a component of the neuroprotective mechanisms that an organism displays after traumatic brain injury (TBI). A diurnal variation in several components of this system has been reported. This variation may influence the recovery and survival rate after TBI. We have previously reported that the recovery and survival rate of rats is higher if TBI occurs at 1:00 than at 13:00. This could be explained by a diurnal variation of the endocannabinoid system. Here, we describe the effects of anandamide administration in rats prior to the induction of TBI at two different times of the day: 1:00 and 13:00. We found that anandamide reduced the neurological damage at both times. Nevertheless, its effects on bleeding, survival, food intake, and body weight were dependent on the time of TBI. In addition, we analyzed the diurnal variation of the expression of the cannabinoid receptors CB1R and CB2R in the cerebral cortex of both control rats and rats subjected to TBI. We found that CB1R protein was expressed more during the day, whereas its mRNA level was higher during the night. We did not find a diurnal variation for the CB2R. In addition, we also found that TBI increased CB1R and CB2R in the contralateral hemisphere and disrupted the CB1R diurnal cycle.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Lesões Encefálicas/terapia , Antagonistas de Receptores de Canabinoides/uso terapêutico , Endocanabinoides/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Alcamidas Poli-Insaturadas/uso terapêutico , Animais , Lesões Encefálicas/metabolismo , Lesões Encefálicas/mortalidade , Córtex Cerebral/metabolismo , Ritmo Circadiano/fisiologia , Modelos Animais de Doenças , Hemorragia , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Taxa de Sobrevida
5.
Neurosci Lett ; 529(2): 118-22, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23022503

RESUMO

During the process of a brain injury, responses to produce damage and cell death are activated, but self-protective responses that attempt to maintain the integrity and functionality of the brain are also activated. We have previously reported that the recovery from a traumatic brain injury (TBI) is better in rats if it occurs during the dark phase of the diurnal cycle when rats are in the waking period. This suggests that wakefulness causes a neuroprotective role in this type of injury. Here we report that 24h of total sleep deprivation after a TBI reduces the morphological damage and enhances the recovery of the rats, as seen on a neurobiological scale.


Assuntos
Lesões Encefálicas/patologia , Encéfalo/patologia , Privação do Sono , Sono REM , Animais , Ritmo Circadiano , Escuridão , Ingestão de Líquidos , Ingestão de Alimentos , Masculino , Córtex Motor/patologia , Ratos , Ratos Wistar , Córtex Somatossensorial/patologia , Fatores de Tempo
6.
Rev. Fac. Med. UNAM ; 55(4): 16-29, jul.-ago. 2012. ilus
Artigo em Espanhol | LILACS | ID: biblio-956923

RESUMO

Durante un proceso de lesión cerebral, por ejemplo en un traumatismo craneoencefálico, se activan respuestas que inducen daño cerebral o muerte celular; sin embargo, también se inducen respuestas de protección que intentan mantener la integridad y funcionalidad del cerebro; esto se conoce como neuroprotección. Efectivamente, posterior a un TCE, se desencadenan mecanismos que traen como consecuencia liberación de neurotransmisores excitadores tales como el glutamato, lo que provoca una entrada masiva de Ca²+ en las neuronas, activación de proteasas, lipasas, sintasa de óxido nítrico, endonucleasas, producción de radicales libres y potencialmente necrosis o apoptosis. Aunque hay reportes de sustancias neuro o cerebroprotectoras desde hace más de 50 años, es al final de la década de los ochenta del siglo pasado cuando comienza a aparecer un gran número de publicaciones tratando de entender los mecanismos neuroprotectores desencadenados por un insulto al cerebro. En este trabajo revisamos brevemente el concepto, la epidemiologia y los diversos agentes que se han utilizado para disminuir el daño causado por un traumatismo craneoencefálico.


During a process of brain injury, e.g. head injury, responses to induce brain damage and / or cell death are activated, but also protective responses that attempt to maintain the integrity and functionality of the brain are induced. This is known as neuroprotection. Indeed a head injury triggers mechanisms that result in release of excitatory neurotransmitters such as glutamate, which causes an influx of Ca²+ into neurons, activation of proteases, lipases, nitric oxide synthase, endonucleases, free radicals production and potentially necrosis and / or apoptosis. Although the brain or neuroprotective substances research has more than 50 years, is at the end of the decade of 80's of last century when it began to appear a large number of publications trying to understand the neuroprotective mechanisms triggered by an insult to the brain. In this paper we briefly review the concept, epidemiology and strategies that have been used to minimize the damage caused by brain injury.

7.
Neurosci Lett ; 408(3): 178-82, 2006 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-17027151

RESUMO

It has been hypothesized that proteins modulate rapid eye movement sleep (REMS). Studies have shown an increase in the liberation of proteins in the mesencephalic reticular formation of cats during REMS. It has also been determined that protein-synthesis inhibitors diminish REMS and that protease-inhibitors increase this sleep phase. These and other studies support the importance of "di novo" protein molecules in sleep, and in particular, in REMS regulation. In this context, it is important to determine the role of endogenous proteases and their endogenous inhibitors in sleep regulation. In this study, we found that Cystatin C (CC), an endogenous protease inhibitor, diminishes wakefulness and increases REMS. We have also found an increase in CC expression after REMS deprivation and a tendency to decrease after a 2 h period of REMS rebound. We further showed that REMS deprivation increases the expression of Cathepsin H (CH), a protease inhibited by CC. These results suggest that naturally occurring protease-inhibitors enhance REMS, perhaps by facilitating the availability of proteins.


Assuntos
Ritmo Circadiano/fisiologia , Cistatinas/metabolismo , Sono REM/fisiologia , Animais , Anticorpos/farmacologia , Western Blotting/métodos , Ritmo Circadiano/efeitos dos fármacos , Cistatina C , Cistatinas/imunologia , Cistatinas/farmacologia , Injeções Intraventriculares/métodos , Masculino , Polissonografia/métodos , Ratos , Ratos Wistar , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Sono REM/efeitos dos fármacos
8.
Neurosci Lett ; 400(1-2): 21-4, 2006 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-16519999

RESUMO

Many studies indicate that the hour of the day at which the onset of stroke occurs is very important in patient recovery. Furthermore, multiple studies have been conducted which show that ischemia in rats produces different magnitudes of injury depending on the hour of the day at which it was induced. Using a traumatic brain injury (TBI) model, we analyzed the effect of the time of day on the recovery of rats and obtained a higher survival rate if TBI was induced at 01:00 h as compared with TBI induced at 13:00 h. We also analyzed the effect of the protease inhibitor cystatin C (CC) on the recovery of rats from TBI and found that it increased mortality and bleeding, and that these effects were more pronounced at 13:00 h.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Ritmo Circadiano , Cistatinas/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos , Análise de Variância , Animais , Lesões Encefálicas/fisiopatologia , Cistatina C , Modelos Animais de Doenças , Esquema de Medicação , Masculino , Ratos , Ratos Wistar , Índices de Gravidade do Trauma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...