Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 6(4): 046003, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21992989

RESUMO

Biomimetics is one of the most important paradigms as researchers seek to invent better engineering designs over human history. However, the observation of insect flight is a relatively recent work. Several researchers have tried to address the aerodynamic performance of flapping creatures and other natural properties of insects, although there are still many unsolved questions. In this study, we try to answer the questions related to the mechanical properties of a beetle's hind wing, which consists of a stiff vein structure and a flexible membrane. The membrane of a beetle's hind wing is small and flexible to the point that conventional methods cannot adequately quantify the material properties. The digital image correlation method, a non-contact displacement measurement method, is used along with a specially designed mini-tensile testing system. To reduce the end effects, we developed an experimental method that can deal with specimens with as high an aspect ratio as possible. Young's modulus varies over the area in the wing and ranges from 2.97 to 4.5 GPa in the chordwise direction and from 1.63 to 2.24 GPa in the spanwise direction. Furthermore, Poisson's ratio in the chordwise direction is 0.63-0.73 and approximately twice as large as that in the spanwise direction (0.33-0.39). From these results, we can conclude that the membrane of a beetle's hind wing is an anisotropic and non-homogeneous material. Our results will provide a better understanding of the flapping mechanism through the formulation of a fluid-structure interaction analysis or aero-elasticity analysis and meritorious data for biomaterial properties database as well as a creative design concept for a micro aerial flapper that mimics an insect.


Assuntos
Aeronaves , Materiais Biomiméticos , Besouros/fisiologia , Voo Animal/fisiologia , Modelos Biológicos , Asas de Animais/fisiologia , Animais , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Membranas/anatomia & histologia , Membranas/fisiologia , Miniaturização , Asas de Animais/anatomia & histologia
2.
Bioinspir Biomim ; 6(3): 036008, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21865627

RESUMO

We present an unsteady blade element theory (BET) model to estimate the aerodynamic forces produced by a freely flying beetle and a beetle-mimicking flapping wing system. Added mass and rotational forces are included to accommodate the unsteady force. In addition to the aerodynamic forces needed to accurately estimate the time history of the forces, the inertial forces of the wings are also calculated. All of the force components are considered based on the full three-dimensional (3D) motion of the wing. The result obtained by the present BET model is validated with the data which were presented in a reference paper. The difference between the averages of the estimated forces (lift and drag) and the measured forces in the reference is about 5.7%. The BET model is also used to estimate the force produced by a freely flying beetle and a beetle-mimicking flapping wing system. The wing kinematics used in the BET calculation of a real beetle and the flapping wing system are captured using high-speed cameras. The results show that the average estimated vertical force of the beetle is reasonably close to the weight of the beetle, and the average estimated thrust of the beetle-mimicking flapping wing system is in good agreement with the measured value. Our results show that the unsteady lift and drag coefficients measured by Dickinson et al are still useful for relatively higher Reynolds number cases, and the proposed BET can be a good way to estimate the force produced by a flapping wing system.


Assuntos
Aeronaves , Materiais Biomiméticos , Biomimética/instrumentação , Biomimética/métodos , Besouros/fisiologia , Voo Animal/fisiologia , Asas de Animais/fisiologia , Animais , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Modelos Biológicos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...