Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(41): 15392-15400, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796739

RESUMO

Humans emit large salivary particles when talking, singing, and playing musical instruments, which have implications for respiratory disease transmission. Yet little work has been done to characterize the emission rates and size distributions of such particles. This work characterized large particle (dp > 35 µm in aerodynamic diameter) emissions from 70 volunteers of varying age and sex while vocalizing and playing wind instruments. Mitigation efficacies for face masks (while singing) and bell covers (while playing instruments) were also examined. Geometric mean particle count emission rates varied from 3.8 min-1 (geometric standard deviation [GSD] = 3.1) for brass instruments playing to 95.1 min-1 (GSD = 3.8) for talking. On average, talking produced the highest emission rates for large particles, in terms of both number and mass, followed by singing and then instrument playing. Neither age, sex, CO2 emissions, nor loudness (average dBA) were significant predictors of large particle emissions, contrary to previous findings for smaller particle sizes (i.e., for dp < 35 µm). Size distributions were similar between talking and singing (count median diameter = 53.0 µm, GSD = 1.69). Bell covers did not affect large particle emissions from most wind instruments, but face masks reduced large particle count emissions for singing by 92.5% (95% CI: 97.9%, 73.7%).


Assuntos
Música , Tamanho da Partícula , Aerossóis e Gotículas Respiratórios , Humanos
2.
Environ Res ; 222: 115415, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738772

RESUMO

BACKGROUND: Evidence in the literature suggests that air pollution exposures experienced prenatally and early in life can be detrimental to normal lung development, however the specific timing of critical windows during development is not fully understood. OBJECTIVES: We evaluated air pollution exposures during the prenatal and early-life period in association with lung function at ages 6-9, in an effort to identify potentially influential windows of exposure for lung development. METHODS: Our study population consisted of 222 children aged 6-9 from the Fresno-Clovis metro area in California with spirometry data collected between May 2015 and May 2017. We used distributed-lag non-linear models to flexibly model the exposure-lag-response for monthly average exposure to fine particulate matter (PM2.5) and ozone (O3) during the prenatal months and first three years of life in association with forced vital capacity (FVC), and forced expiratory volume in the first second (FEV1), adjusted for covariates. RESULTS: PM2.5 exposure during the prenatal period and the first 3-years of life was associated with lower FVC and FEV1 assessed at ages 6-9. Specifically, an increase from the 5th percentile of the observed monthly average exposure (7.55 µg/m3) to the median observed exposure (12.69 µg/m3) for the duration of the window was associated with 0.42 L lower FVC (95% confidence interval (CI): -0.82, -0.03) and 0.38 L lower FEV1 (95% CI: -0.75, -0.02). The shape of the lag-response indicated that the second half of pregnancy may be a particularly influential window of exposure. Associations for ozone were not as strong and typically CIs included the null. CONCLUSIONS: Our findings indicate that prenatal and early-life exposures to PM2.5 are associated with decreased lung function later in childhood. Exposures during the latter months of pregnancy may be especially influential.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Gravidez , Feminino , Humanos , Criança , Pré-Escolar , Poluentes Atmosféricos/análise , Exposição Ambiental , Pulmão , Material Particulado/análise
3.
Sci Rep ; 12(1): 11303, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788635

RESUMO

Aerosol emissions from wind instruments are a suspected route of transmission for airborne infectious diseases, such as SARS-CoV-2. We evaluated aerosol number emissions (from 0.25 to 35.15 µm) from 81 volunteer performers of both sexes and varied age (12 to 63 years) while playing wind instruments (bassoon, clarinet, flute, French horn, oboe, piccolo, saxophone, trombone, trumpet, and tuba) or singing. Measured emissions spanned more than two orders of magnitude, ranging in rate from < 8 to 1,815 particles s-1, with brass instruments, on average, producing 191% (95% CI 81-367%) more aerosol than woodwinds. Being male was associated with a 70% increase in emissions (vs. female; 95% CI 9-166%). Each 1 dBA increase in sound pressure level was associated with a 28% increase (95% CI 10-40%) in emissions from brass instruments; sound pressure level was not associated with woodwind emissions. Age was not a significant predictor of emissions. The use of bell covers reduced aerosol emissions from three brass instruments tested (trombone, tuba, and trumpet), with average reductions ranging from 53 to 73%, but not for the two woodwind instruments tested (oboe and clarinet). Results from this work can facilitate infectious disease risk management for the performing arts.


Assuntos
COVID-19 , Música , Adolescente , Adulto , Aerossóis , COVID-19/epidemiologia , COVID-19/prevenção & controle , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Som , Adulto Jovem
4.
Emerg Infect Dis ; 28(8): 1551-1558, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35705189

RESUMO

A COVID-19 outbreak occurred among Cameron Peak Fire responders in Colorado, USA, during August 2020-January 2021. The Cameron Peak Fire was the largest recorded wildfire in Colorado history, lasting August-December 2020. At least 6,123 responders were involved, including 1,260 firefighters in 63 crews who mobilized to the fire camps. A total of 79 COVID-19 cases were identified among responders, and 273 close contacts were quarantined. State and local public health investigated the outbreak and coordinated with wildfire management teams to prevent disease spread. We performed whole-genome sequencing and applied social network analysis to visualize clusters and transmission dynamics. Phylogenetic analysis identified 8 lineages among sequenced specimens, implying multiple introductions. Social network analysis identified spread between and within crews. Strategies such as implementing symptom screening and testing of arriving responders, educating responders about overlapping symptoms of smoke inhalation and COVID-19, improving physical distancing of crews, and encouraging vaccinations are recommended.


Assuntos
COVID-19 , Bombeiros , Incêndios Florestais , COVID-19/epidemiologia , Colorado/epidemiologia , Surtos de Doenças , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...