Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAMA Surg ; 159(2): 185-192, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055227

RESUMO

Objective: To overcome limitations of open surgery artificial intelligence (AI) models by curating the largest collection of annotated videos and to leverage this AI-ready data set to develop a generalizable multitask AI model capable of real-time understanding of clinically significant surgical behaviors in prospectively collected real-world surgical videos. Design, Setting, and Participants: The study team programmatically queried open surgery procedures on YouTube and manually annotated selected videos to create the AI-ready data set used to train a multitask AI model for 2 proof-of-concept studies, one generating surgical signatures that define the patterns of a given procedure and the other identifying kinematics of hand motion that correlate with surgeon skill level and experience. The Annotated Videos of Open Surgery (AVOS) data set includes 1997 videos from 23 open-surgical procedure types uploaded to YouTube from 50 countries over the last 15 years. Prospectively recorded surgical videos were collected from a single tertiary care academic medical center. Deidentified videos were recorded of surgeons performing open surgical procedures and analyzed for correlation with surgical training. Exposures: The multitask AI model was trained on the AI-ready video data set and then retrospectively applied to the prospectively collected video data set. Main Outcomes and Measures: Analysis of open surgical videos in near real-time, performance on AI-ready and prospectively collected videos, and quantification of surgeon skill. Results: Using the AI-ready data set, the study team developed a multitask AI model capable of real-time understanding of surgical behaviors-the building blocks of procedural flow and surgeon skill-across space and time. Through principal component analysis, a single compound skill feature was identified, composed of a linear combination of kinematic hand attributes. This feature was a significant discriminator between experienced surgeons and surgical trainees across 101 prospectively collected surgical videos of 14 operators. For each unit increase in the compound feature value, the odds of the operator being an experienced surgeon were 3.6 times higher (95% CI, 1.67-7.62; P = .001). Conclusions and Relevance: In this observational study, the AVOS-trained model was applied to analyze prospectively collected open surgical videos and identify kinematic descriptors of surgical skill related to efficiency of hand motion. The ability to provide AI-deduced insights into surgical structure and skill is valuable in optimizing surgical skill acquisition and ultimately improving surgical care.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Humanos , Estudos Retrospectivos , Gravação em Vídeo/métodos , Centros Médicos Acadêmicos
2.
Angew Chem Int Ed Engl ; 62(27): e202301468, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37139920

RESUMO

Platinum nanoparticles (NPs) supported by titania exhibit a strong metal-support interaction (SMSI)[1] that can induce overlayer formation and encapsulation of the NP's with a thin layer of support material. This encapsulation modifies the catalyst's properties, such as increasing its chemoselectivity[2] and stabilizing it against sintering.[3] Encapsulation is typically induced during high-temperature reductive activation and can be reversed through oxidative treatments.[1] However, recent findings indicate that the overlayer can be stable in oxygen.[4, 5] Using in situ transmission electron microscopy, we investigated how the overlayer changes with varying conditions. We found that exposure to oxygen below 400 °C caused disorder and removal of the overlayer upon subsequent hydrogen treatment. In contrast, elevating the temperature to 900 °C while maintaining the oxygen atmosphere preserved the overlayer, preventing platinum evaporation when exposed to oxygen. Our findings demonstrate how different treatments can influence the stability of nanoparticles with or without titania overlayers. expanding the concept of SMSI and enabling noble metal catalysts to operate in harsh environments without evaporation associated losses during burn-off cycling.

3.
Surg Endosc ; 37(4): 3010-3017, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36536082

RESUMO

BACKGROUND: Intraoperative skills assessment is time-consuming and subjective; an efficient and objective computer vision-based approach for feedback is desired. In this work, we aim to design and validate an interpretable automated method to evaluate technical proficiency using colorectal robotic surgery videos with artificial intelligence. METHODS: 92 curated clips of peritoneal closure were characterized by both board-certified surgeons and a computer vision AI algorithm to compare the measures of surgical skill. For human ratings, six surgeons graded clips according to the GEARS assessment tool; for AI assessment, deep learning computer vision algorithms for surgical tool detection and tracking were developed and implemented. RESULTS: For the GEARS category of efficiency, we observe a positive correlation between human expert ratings of technical efficiency and AI-determined total tool movement (r = - 0.72). Additionally, we show that more proficient surgeons perform closure with significantly less tool movement compared to less proficient surgeons (p < 0.001). For the GEARS category of bimanual dexterity, a positive correlation between expert ratings of bimanual dexterity and the AI model's calculated measure of bimanual movement based on simultaneous tool movement (r = 0.48) was also observed. On average, we also find that higher skill clips have significantly more simultaneous movement in both hands compared to lower skill clips (p < 0.001). CONCLUSIONS: In this study, measurements of technical proficiency extracted from AI algorithms are shown to correlate with those given by expert surgeons. Although we target measurements of efficiency and bimanual dexterity, this work suggests that artificial intelligence through computer vision holds promise for efficiently standardizing grading of surgical technique, which may help in surgical skills training.


Assuntos
Procedimentos Cirúrgicos Robóticos , Cirurgiões , Humanos , Procedimentos Cirúrgicos Robóticos/métodos , Inteligência Artificial , Cirurgiões/educação , Algoritmos , Computadores , Competência Clínica
4.
Nat Mater ; 21(11): 1290-1297, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36280703

RESUMO

Stable catalysts are essential to address energy and environmental challenges, especially for applications in harsh environments (for example, high temperature, oxidizing atmosphere and steam). In such conditions, supported metal catalysts deactivate due to sintering-a process where initially small nanoparticles grow into larger ones with reduced active surface area-but strategies to stabilize them can lead to decreased performance. Here we report stable catalysts prepared through the encapsulation of platinum nanoparticles inside an alumina framework, which was formed by depositing an alumina precursor within a separately prepared porous organic framework impregnated with platinum nanoparticles. These catalysts do not sinter at 800 °C in the presence of oxygen and steam, conditions in which conventional catalysts sinter to a large extent, while showing similar reaction rates. Extending this approach to Pd-Pt bimetallic catalysts led to the small particle size being maintained at temperatures as high as 1,100 °C in air and 10% steam. This strategy can be broadly applied to other metal and metal oxides for applications where sintering is a major cause of material deactivation.


Assuntos
Nanopartículas Metálicas , Platina , Temperatura , Vapor , Óxido de Alumínio
5.
J Am Chem Soc ; 144(26): 11646-11655, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737471

RESUMO

Metal nanoparticles have superior properties for a variety of applications. In many cases, the improved performance of metal nanoparticles is tightly correlated with their size and atomic composition. To date, colloidal synthesis is the most commonly used technique to produce metal nanoparticles. However, colloidal synthesis is currently a laboratory scale technique that has not been applied at larger scales. One of the greatest challenges facing large-scale colloidal synthesis of metal nanoparticles is the large volume of long-chain hydrocarbon solvents and surfactants needed for the synthesis, which can dominate the cost of nanoparticle production. In this work, we demonstrate a protocol, based on solvent distillation, which enables the reuse of colloidal nanoparticle synthesis surfactants and solvents for over 10 rounds of successive syntheses and demonstrates that pure solvents and surfactants are not necessarily needed to produce uniform nanocrystals. We show that this protocol can be applied to the production of a wide variety of mono- and bimetallic nanoparticles with reproducible sizes and compositions, which leads to reproducible performance as heterogeneous catalysts. A techno-economic assessment demonstrates the potential of this technique to greatly reduce the solvent-related costs of colloidal metal nanoparticle synthesis, which could contribute to its wider application at commercial scale.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Solventes , Tensoativos
6.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135880

RESUMO

The conversion of CO2 into fuels and chemicals is an attractive option for mitigating CO2 emissions. Controlling the selectivity of this process is beneficial to produce desirable liquid fuels, but C-C coupling is a limiting step in the reaction that requires high pressures. Here, we propose a strategy to favor C-C coupling on a supported Ru/TiO2 catalyst by encapsulating it within the polymer layers of an imine-based porous organic polymer that controls its selectivity. Such polymer confinement modifies the CO2 hydrogenation behavior of the Ru surface, significantly enhancing the C2+ production turnover frequency by 10-fold. We demonstrate that the polymer layers affect the adsorption of reactants and intermediates while being stable under the demanding reaction conditions. Our findings highlight the promising opportunity of using polymer/metal interfaces for the rational engineering of active sites and as a general tool for controlling selective transformations in supported catalyst systems.

7.
J Am Chem Soc ; 144(4): 1612-1621, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35050603

RESUMO

Low-temperature removal of noxious environmental emissions plays a critical role in minimizing the harmful effects of hydrocarbon fuels. Emission-control catalysts typically consist of large quantities of rare, noble metals (e.g., platinum and palladium), which are expensive and environmentally damaging metals to extract. Alloying with cheaper base metals offers the potential to boost catalytic activity while optimizing the use of noble metals. In this work, we show that PtxCu100-x catalysts prepared from colloidal nanocrystals are more active than the corresponding Pt catalysts for complete propene oxidation. By carefully controlling their composition while maintaining nanocrystal size, alloys with dilute Cu concentrations (15-30% atomic fraction) demonstrate promoted activity compared to pure Pt. Complete propene oxidation was observed at temperatures as low as 150 °C in the presence of steam, and five to ten times higher turnover frequencies were found compared to monometallic Pt catalysts. Through DFT studies and structural and catalytic characterization, the remarkable activity of dilute PtxCu100-x alloys was related to the tuning of the electronic structure of Pt to reach optimal binding energies of C* and O* intermediates. This work provides a general approach toward investigation of structure-property relationships of alloyed catalysts with efficient and optimized use of noble metals.

8.
Adv Mater ; 33(44): e2104533, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34535919

RESUMO

Electronic and geometric interactions between active and support phases are critical in determining the activity of heterogeneous catalysts, but metal-support interactions are challenging to study. Here, it is demonstrated how the combination of the monolayer-controlled formation using atomic layer deposition (ALD) and colloidal nanocrystal synthesis methods leads to catalysts with sub-nanometer precision of active and support phases, thus allowing for the study of the metal-support interactions in detail. The use of this approach in developing a fundamental understanding of support effects in Pd-catalyzed methane combustion is demonstrated. Uniform Pd nanocrystals are deposited onto Al2 O3 /SiO2 spherical supports prepared with control over morphology and Al2 O3 layer thicknesses ranging from sub-monolayer to a ≈4 nm thick uniform coating. Dramatic changes in catalytic activity depending on the coverage and structure of Al2 O3 situated at the Pd/Al2 O3 interface are observed, with even a single monolayer of alumina contributing an order of magnitude increase in reaction rate. By building the Pd/Al2 O3 interface up layer-by-layer and using uniform Pd nanocrystals, this work demonstrates the importance of controlled and tunable materials in determining metal-support interactions and catalyst activity.

9.
Angew Chem Int Ed Engl ; 60(14): 7971-7979, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403788

RESUMO

Monodispersed metal and semiconductor nanocrystals have attracted great attention in fundamental and applied research due to their tunable size, morphology, and well-defined chemical composition. Utilizing these nanocrystals in a controllable way is highly desirable especially when using them as building blocks for the preparation of nanostructured materials. Their deposition onto oxide materials provide them with wide applicability in many areas, including catalysis. However, so far deposition methods are limited and do not provide control to achieve high particle loadings. This study demonstrates a general approach for the deposition of hydrophobic ligand-stabilized nanocrystals on hydrophilic oxide supports without ligand-exchange. Surface functionalization of the supports with primary amine groups either using an organosilane ((3-aminopropyl)trimethoxysilane) or bonding with aminoalcohols (3-amino-1,2-propanediol) were found to significantly improve the interaction between nanocrystals and supports achieving high loadings (>10 wt. %). The bonding method with aminoalcohols guarantees the opportunity to remove the binding molecules thus allowing clean metal/oxide materials to be obtained, which is of great importance in the preparation of supported nanocrystals for heterogeneous catalysis.

10.
Nanoscale ; 13(2): 930-938, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33367382

RESUMO

A major aim in the synthesis of nanomaterials is the development of stable materials for high-temperature applications. Although the thermal coarsening of small and active nanocrystals into less active aggregates is universal in material deactivation, the atomic mechanisms governing nanocrystal growth remain elusive. By utilizing colloidally synthesized Pd/SiO2 powder nanocomposites with controlled nanocrystal sizes and spatial arrangements, we unravel the competing contributions of particle coalescence and atomic ripening processes in nanocrystal growth. Through the study of size-controlled nanocrystals, we can uniquely identify the presence of either nanocrystal dimers or smaller nanoclusters, which indicate the relative contributions of these two processes. By controlling and tracking the nanocrystal density, we demonstrate the spatial dependence of nanocrystal coalescence and the spatial independence of Ostwald (atomic) ripening. Overall, we prove that the most significant loss of the nanocrystal surface area is due to high-temperature atomic ripening. This observation is in quantitative agreement with changes in the nanocrystal density produced by simulations of atomic exchange. Using well-defined colloidal materials, we extend our analysis to explain the unusual high-temperature stability of Au/SiO2 materials up to 800 °C.

11.
ACS Cent Sci ; 6(11): 1916-1937, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33274270

RESUMO

Controlling selectivity between competing reaction pathways is crucial in catalysis. Several approaches have been proposed to achieve this goal in traditional heterogeneous catalysts including tuning nanoparticle size, varying alloy composition, and controlling supporting material. A less explored and promising research area to control reaction selectivity is via the use of hybrid organic/inorganic catalysts. These materials contain inorganic components which serve as sites for chemical reactions and organic components which either provide diffusional control or directly participate in the formation of active site motifs. Despite the appealing potential of these hybrid materials to increase reaction selectivity, there are significant challenges to the rational design of such hybrid nanostructures. Structural and mechanistic characterization of these materials play a key role in understanding and, therefore, designing these organic/inorganic hybrid catalysts. This Outlook highlights the design of hybrid organic/inorganic catalysts with a brief overview of four different classes of materials and discusses the practical catalytic properties and opportunities emerging from such designs in the area of energy and environmental transformations. Key structural and mechanistic characterization studies are identified to provide fundamental insight into the atomic structure and catalytic behavior of hybrid organic/inorganic catalysts. Exemplary works are used to show how specific active site motifs allow for remarkable changes in the reaction selectivity. Finally, to demonstrate the potential of hybrid catalyst materials, we suggest a characterization-based approach toward the design of biomimetic hybrid organic/inorganic materials for a specific application in the energy and environmental research space: the conversion of methane into methanol.

12.
J Am Chem Soc ; 142(34): 14481-14494, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786792

RESUMO

Supported metal nanoparticles are essential components of high-performing catalysts, and their structures are intensely researched. In comparison, nanoparticle spatial distribution in powder catalysts is conventionally not quantified, and the influence of this collective property on catalyst performance remains poorly investigated. Here, we demonstrate a general colloidal self-assembly method to control uniformity of nanoparticle spatial distribution on common industrial powder supports. We quantify distributions on the nanoscale using image statistics and show that the type of nanospatial distribution determines not only the stability, but also the activity of heterogeneous catalysts. Widely investigated systems (Au-TiO2 for CO oxidation thermocatalysis and Pd-TiO2 for H2 evolution photocatalysis) were used to showcase the universal importance of nanoparticle spatial organization. Spatially and temporally resolved microkinetic modeling revealed that nonuniformly distributed Au nanoparticles suffer from local depletion of surface oxygen, and therefore lower CO oxidation activity, as compared to uniformly distributed nanoparticles. Nanoparticle spatial distribution also determines the stability of Pd-TiO2 photocatalysts, because nonuniformly distributed nanoparticles sinter while uniformly distributed nanoparticles do not. This work introduces new tools to evaluate and understand catalyst collective (ensemble) properties in powder catalysts, which thereby pave the way to more active and stable heterogeneous catalysts.


Assuntos
Monóxido de Carbono/química , Ouro/química , Hidrogênio/química , Nanopartículas/química , Paládio/química , Titânio/química , Catálise , Oxirredução , Tamanho da Partícula , Processos Fotoquímicos , Pós , Propriedades de Superfície
13.
Proc Natl Acad Sci U S A ; 117(26): 14721-14729, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554500

RESUMO

Supported metal catalysts are extensively used in industrial and environmental applications. To improve their performance, it is crucial to identify the most active sites. This identification is, however, made challenging by the presence of a large number of potential surface structures that complicate such an assignment. Often, the active site is formed by an ensemble of atoms, thus introducing further complications in its identification. Being able to produce uniform structures and identify the ones that are responsible for the catalyst performance is a crucial goal. In this work, we utilize a combination of uniform Pd/Pt nanocrystal catalysts and theory to reveal the catalytic active-site ensemble in highly active propene combustion materials. Using colloidal chemistry to exquisitely control nanoparticle size, we find that intrinsic rates for propene combustion in the presence of water increase monotonically with particle size on Pt-rich catalysts, suggesting that the reaction is structure dependent. We also reveal that water has a near-zero or mildly positive reaction rate order over Pd/Pt catalysts. Theory insights allow us to determine that the interaction of water with extended terraces present in large particles leads to the formation of step sites on metallic surfaces. These specific step-edge sites are responsible for the efficient combustion of propene at low temperature. This work reveals an elusive geometric ensemble, thus clearly identifying the active site in alkene combustion catalysts. These insights demonstrate how the combination of uniform catalysts and theory can provide a much deeper understanding of active-site geometry for many applications.

14.
J Chem Phys ; 151(15): 154703, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640349

RESUMO

Pd- and Pt-based catalysts are highly studied materials due to their widespread use in emissions control catalysis. However, claims continue to vary regarding the active phase and oxidation state of the metals. Different conclusions have likely been reached due to the heterogeneous nature of such materials containing various metal nanoparticle sizes and compositions, which may each possess unique redox features. In this work, using uniform nanocrystal catalysts, we study the effect of particle size and alloying on redox properties of Pd-based catalysts and show their contribution to methane combustion activity using operando quick extended x-ray absorption fine structure measurements. Results demonstrate that for all studied Pd sizes (3 nm-16 nm), Pd oxidation directly precedes CH4 combustion to CO2, suggesting Pd oxidation as a prerequisite step to methane combustion, and an oxidation pretreatment shows equal or better catalysis than a reduction pretreatment. Results are then extended to uniform alloyed PtxPd1-x nanoparticles, where oxidative pretreatments are shown to enhance low-temperature combustion. In these uniform alloys, we observe a composition-dependent effect with Pt-rich alloys showing the maximum difference between oxidative and reductive pretreatments. In Pt-rich alloys, we initially observe that the presence of Pt maintains Pd in a lower-activity reduced state. However, with time on stream, PdO eventually segregates under oxidizing combustion conditions, leading to a slowly increasing activity. Overall, across particle sizes and alloy compositions, we relate increased catalytic activity to Pd oxidation, thus shedding light on previous contrasting results related to the methane combustion activity of these catalysts.

15.
Angew Chem Int Ed Engl ; 58(48): 17451-17457, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31545533

RESUMO

Catalytic CO2 reduction to fuels and chemicals is a major pursuit in reducing greenhouse gas emissions. One approach utilizes the reverse water-gas shift reaction, followed by Fischer-Tropsch synthesis, and iron is a well-known candidate for this process. Some attempts have been made to modify and improve its reactivity, but resulted in limited success. Now, using ruthenium-iron oxide colloidal heterodimers, close contact between the two phases promotes the reduction of iron oxide via a proximal hydrogen spillover effect, leading to the formation of ruthenium-iron core-shell structures active for the reaction at significantly lower temperatures than in bare iron catalysts. Furthermore, by engineering the iron oxide shell thickness, a fourfold increase in hydrocarbon yield is achieved compared to the heterodimers. This work shows how rational design of colloidal heterostructures can result in materials with significantly improved catalytic performance in CO2 conversion processes.

16.
ACS Appl Mater Interfaces ; 11(33): 30154-30162, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31353888

RESUMO

Here, we propose a simple approach for the design of highly porous multicomponent heterostructures by infiltration of block-co-polymer templates with inorganic precursors in swelling solvents followed by gas-phase sequential infiltration synthesis and thermal annealing. This approach can prepare conformal coatings, free-standing membranes, and powders consisting of uniformly sized metal or metal oxide nanoparticles (NPs) well dispersed in a porous oxide matrix. We employed this new, versatile synthetic concept to synthesize catalytically active heterostructures of uniformly dispersed ∼4.3 nm PdO nanoparticles accessible through three-dimensional pore networks of the alumina support. Importantly, such materials reveal high resistance against sintering at 800 °C, even at relatively high loadings of NPs (∼10 wt %). At the same time, such heterostructures enable high mass transport due to highly interconnected nature of the pores. The surface of synthesized nanoparticles in the porous matrix is highly accessible, which enables their good catalytic performance in methane and carbon monoxide oxidation. In addition, we demonstrate that this approach can be utilized to synthesize heterostructures consisting of different types of NPs on a highly porous support. Our results show that swelling-based infiltration provides a promising route toward the robust and scalable synthesis of multicomponent structures.

17.
Nat Catal ; 22019.
Artigo em Inglês | MEDLINE | ID: mdl-32118197

RESUMO

In the high-temperature environments needed to perform catalytic processes, supported precious metal catalysts severely lose their activity over time. Even brief exposure to high temperatures can lead to significant losses in activity, which forces manufacturers to use large amounts of noble metals to ensure effective catalyst function for a required lifetime. Generally, loss of catalytic activity is attributed to nanoparticle sintering, or processes by which larger particles grow at the expense of smaller ones. Here, by independently controlling particle size and particle loading using colloidal nanocrystals, we reveal the opposite process as a novel deactivation mechanism: nanoparticles rapidly lose activity by high-temperature nanoparticle decomposition into inactive single atoms. This deactivation route is remarkably fast, leading to severe loss of activity in as little as ten minutes. Importantly, this deactivation pathway is strongly dependent on particle density and concentration of support defect sites. A quantitative statistical model explains how for certain reactions, higher particle densities can lead to more stable catalysts.

18.
J Am Chem Soc ; 140(42): 13736-13745, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30252458

RESUMO

CO2 reduction to higher value products is a promising way to produce fuels and key chemical building blocks while reducing CO2 emissions. The reaction at atmospheric pressure mainly yields CH4 via methanation and CO via the reverse water-gas shift (RWGS) reaction. Describing catalyst features that control the selectivity of these two pathways is important to determine the formation of specific products. At the same time, identification of morphological changes occurring to catalysts under reaction conditions can be crucial to tune their catalytic performance. In this contribution we investigate the dependency of selectivity for CO2 reduction on the size of Ru nanoparticles (NPs) and on support. We find that even at rather low temperatures (210 °C), oxidative pretreatment induces redispersion of Ru NPs supported on CeO2 and leads to a complete switch in the performance of this material from a well-known selective methanation catalyst to an active and selective RWGS catalyst. By utilizing in situ X-ray absorption spectroscopy, we demonstrate that the low-temperature redispersion process occurs via decomposition of the metal oxide phase with size-dependent kinetics, producing stable single-site RuO x/CeO2 species strongly bound to the CeO2 support that are remarkably selective for CO production. These results show that reaction selectivity can be heavily dependent on catalyst structure and that structural changes of the catalyst can occur even at low temperatures and can go unseen in materials with less defined structures.

19.
J Am Chem Soc ; 139(34): 11989-11997, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28800226

RESUMO

Promoters enhance the performance of catalytic active phases by increasing rates, stability, and/or selectivity. The process of identifying promoters is in most cases empirical and relies on testing a broad range of catalysts prepared with the random deposition of active and promoter phases, typically with no fine control over their localization. This issue is particularly relevant in supported bimetallic systems, where two metals are codeposited onto high-surface area materials. We here report the use of colloidal bimetallic nanocrystals to produce catalysts where the active and promoter phases are colocalized to a fine extent. This strategy enables a systematic approach to study the promotional effects of several transition metals on palladium catalysts for methane oxidation. In order to achieve these goals, we demonstrate a single synthetic protocol to obtain uniform palladium-based bimetallic nanocrystals (PdM, M = V, Mn, Fe, Co, Ni, Zn, Sn, and potentially extendable to other metal combinations) with a wide variety of compositions and sizes based on high-temperature thermal decomposition of readily available precursors. Once the nanocrystals are supported onto oxide materials, thermal treatments in air cause segregation of the base metal oxide phase in close proximity to the Pd phase. We demonstrate that some metals (Fe, Co, and Sn) inhibit the sintering of the active Pd metal phase, while others (Ni and Zn) increase its intrinsic activity compared to a monometallic Pd catalyst. This procedure can be generalized to systematically investigate the promotional effects of metal and metal oxide phases for a variety of active metal-promoter combinations and catalytic reactions.

20.
Tetrahedron ; 71(35): 5781-5792, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26461082

RESUMO

The development and optimization of a palladium-catalyzed asymmetric conjugate addition of arylboronic acids to cyclic enone conjugate acceptors is described. These reactions employ air-stable and readily-available reagents in an operationally simple and robust transformation that yields ß-quaternary ketones in high yields and enantioselectivities. Notably, the reaction itself is highly tolerant of atmospheric oxygen and moisture and therefore does not require the use of dry or deoxygenated solvents, specially purified reagents, or an inert atmosphere. The ring size and ß-substituent of the enone are highly variable, and a wide variety of ß-quaternary ketones can be synthesized. More recently, the use of NH4PF6 has further expanded the substrate scope to include heteroatom-containing arylboronic acids and ß-acyl enone substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...