Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Case Rep Nephrol ; 2024: 5121375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444459

RESUMO

Congenital nephrotic syndrome is an autosomal recessive inherited disorder that manifests as steroid-resistant massive proteinuria in the first three months of life. Defects in the glomerular filtration mechanism are the primary etiology. We present a child who developed severe nephrotic syndrome at two weeks of age and eventually required a bilateral nephrectomy. Genetic testing revealed compound heterozygous variants in NPHS1 including a known pathogenic variant and a missense variant of uncertain significance. Light microscopy revealed crescent formation-an atypical finding in congenital nephrotic syndrome caused by nephrin variants-in addition to focal segmental and global glomerulosclerosis. Electron microscopy showed diffuse podocyte foot process effacement. Confocal and Airyscan immunofluorescence microcopy showed aggregation of nephrin in the podocyte cell body that is not a result of diffuse podocyte foot process effacement as seen in minimal change disease. These findings confirm the novel variant as pathogenic.

2.
Proc Natl Acad Sci U S A ; 117(21): 11715-11726, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32398371

RESUMO

Campylobacter jejuni monitors intestinal metabolites produced by the host and microbiota to initiate intestinal colonization of avian and animal hosts for commensalism and infection of humans for diarrheal disease. We previously discovered that C. jejuni has the capacity to spatially discern different intestinal regions by sensing lactate and the short-chain fatty acids acetate and butyrate and then alter transcription of colonization factors appropriately for in vivo growth. In this study, we identified the C. jejuni butyrate-modulated regulon and discovered that the BumSR two-component signal transduction system (TCS) directs a response to butyrate by identifying mutants in a genetic screen defective for butyrate-modulated transcription. The BumSR TCS, which is important for infection of humans and optimal colonization of avian hosts, senses butyrate likely by indirect means to alter transcription of genes encoding important colonization determinants. Unlike many canonical TCSs, the predicted cytoplasmic sensor kinase BumS lacked in vitro autokinase activity, which would normally lead to phosphorylation of the cognate BumR response regulator. Instead, BumS has likely evolved mutations to naturally function as a phosphatase whose activity is influenced by exogenous butyrate to control the level of endogenous phosphorylation of BumR and its ability to alter transcription of target genes. To our knowledge, the BumSR TCS is the only bacterial signal transduction system identified so far that mediates responses to the microbiota-generated intestinal metabolite butyrate, an important factor for host intestinal health and homeostasis. Our findings suggest that butyrate sensing by this system is vital for C. jejuni colonization of multiple hosts.


Assuntos
Proteínas de Bactérias , Butiratos/metabolismo , Campylobacter jejuni , Regulação Bacteriana da Expressão Gênica/genética , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Campylobacter/microbiologia , Galinhas , Humanos , Monoéster Fosfórico Hidrolases/genética , Transdução de Sinais/genética
3.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701403

RESUMO

The RV144 HIV vaccine trial included a recombinant HIV glycoprotein 120 (gp120) construct fused to a small portion of herpes simplex virus 1 (HSV-1) glycoprotein D (gD) so that the first 40 amino acids of gp120 were replaced by the signal sequence and the first 27 amino acids of the mature form of gD. This region of gD contains most of the binding site for HVEM, an HSV receptor important for virus infection of epithelial cells and lymphocytes. RV144 induced antibodies to HIV that were partially protective against infection, as well as antibodies to HSV. We derived monoclonal antibodies (MAbs) from peripheral blood B cells of recipients of the RV144 HIV vaccine and showed that these antibodies neutralized HSV-1 infection in cells expressing HVEM, but not the other major virus receptor, nectin-1. The MAbs mediated antibody-dependent cellular cytotoxicity (ADCC), and mice that received the MAbs and were then challenged by corneal inoculation with HSV-1 had reduced eye disease, shedding, and latent infection. To our knowledge, this is the first description of MAbs derived from human recipients of a vaccine that specifically target the HVEM binding site of gD. In summary, we found that monoclonal antibodies derived from humans vaccinated with the HVEM binding domain of HSV-1 gD (i) neutralized HSV-1 infection in a cell receptor-specific manner, (ii) mediated ADCC, and (iii) reduced ocular disease in virus-infected mice.IMPORTANCE Herpes simplex virus 1 (HSV-1) causes cold sores and neonatal herpes and is a leading cause of blindness. Despite many trials, no HSV vaccine has been approved. Nectin-1 and HVEM are the two major cellular receptors for HSV. These receptors are expressed at different levels in various tissues, and the role of each receptor in HSV pathogenesis is not well understood. We derived human monoclonal antibodies from persons who received the HIV RV144 vaccine that contained the HVEM binding domain of HSV-1 gD fused to HIV gp120. These antibodies were able to specifically neutralize HSV-1 infection in vitro via HVEM. Furthermore, we showed for the first time that HVEM-specific HSV-1 neutralizing antibodies protect mice from HSV-1 eye disease, indicating the critical role of HVEM in HSV-1 ocular infection.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais/imunologia , Oftalmopatias/prevenção & controle , Proteína gp120 do Envelope de HIV/imunologia , Herpes Simples/prevenção & controle , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Simplexvirus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular , Oftalmopatias/virologia , Feminino , Proteína gp120 do Envelope de HIV/genética , Herpes Simples/imunologia , Herpes Simples/virologia , Humanos , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Simplexvirus/genética , Proteínas do Envelope Viral/genética
4.
J Virol ; 90(1): 562-74, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26559846

RESUMO

UNLABELLED: A recent phase 3 trial with soluble herpes simplex virus 2 (HSV-2) glycoprotein D (gD2t) in adjuvant failed to show protection against genital herpes. We postulated that live attenuated HSV-2 would provide more HSV antigens for induction of virus-specific antibodies and cellular immunity than would gD2t. We previously reported an HSV-2 mutant, HSV2-gD27, in which the nectin-1 binding domain of gD2 is altered so that the virus is impaired for infecting neural cells, but not epithelial cells, in vitro and is impaired for infecting dorsal root ganglia in mice (K. Wang, J. D. Kappel, C. Canders, W. F. Davila, D. Sayre, M. Chavez, L. Pesnicak, and J. I. Cohen, J Virol 86:12891-12902, 2012, doi:10.1128/JVI.01055-12). Here we report that the mutations in HSV2-gD27 were stable when the virus was passaged in cell culture and during acute infection of mice. HSV2-gD27 was attenuated in mice when it was inoculated onto the cornea, intramuscularly (i.m.), intravaginally, and intracranially. Vaccination of mice i.m. with HSV2-gD27 provided better inhibition of challenge virus replication in the vagina than when the virus was used to vaccinate mice intranasally or subcutaneously. Comparison of i.m. vaccinations with HSV2-gD27 versus gD2t in adjuvant showed that HSV2-gD27 induced larger reductions of challenge virus replication in the vagina and reduced latent viral loads in dorsal root ganglia but induced lower serum neutralizing antibody titers than those obtained with gD2t in adjuvant. Taken together, our data indicate that a live attenuated HSV-2 vaccine impaired for infection of neurons provides better protection from vaginal challenge with HSV-2 than that obtained with a subunit vaccine, despite inducing lower titers of HSV-2 neutralizing antibodies in the serum. IMPORTANCE: Genital herpes simplex is one of the most prevalent sexually transmitted diseases. Though HSV-2 disease is usually mild, it can be life threatening in neonates and immunocompromised persons. In addition, genital herpes increases the frequency of HIV infection and transmission. HSV-2 maintains a latent infection in sensory neurons and cannot be cleared with antiviral drugs. The virus frequently reactivates, resulting in virus shedding in the genital area, which serves as a source for transmission. A prophylactic vaccine is needed to prevent disease and to control the spread of the virus. Previous human trials of subunit vaccines have been unsuccessful. Here we report the results of vaccinating mice with a new type of live attenuated HSV-2 vaccine that is impaired for infection of neurons and provides better protection of mice than that obtained with a subunit vaccine. The strategy of altering the cell tropism of a virus is a new approach for a live attenuated vaccine.


Assuntos
Herpesvirus Humano 2/imunologia , Herpesvirus Humano 2/fisiologia , Vacinas contra Herpesvirus/imunologia , Proteínas do Envelope Viral/imunologia , Tropismo Viral , Animais , Linhagem Celular , Feminino , Instabilidade Genômica , Herpesvirus Humano 2/genética , Vacinas contra Herpesvirus/administração & dosagem , Vacinas contra Herpesvirus/genética , Injeções Intramusculares , Camundongos Endogâmicos BALB C , Inoculações Seriadas , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vagina/virologia , Proteínas do Envelope Viral/genética , Carga Viral
5.
J Virol ; 89(1): 83-96, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25320297

RESUMO

UNLABELLED: No herpes simplex virus 2 (HSV-2) vaccine has been licensed for use in humans. HSV-2 glycoproteins B (gB) and D (gD) are targets of neutralizing antibodies and T cells, but clinical trials involving intramuscular (i.m.) injection of HSV-2 gB and gD in adjuvants have not been effective. Here we evaluated intravaginal (ivag) genetic immunization of C57BL/6 mice with a replication-defective human papillomavirus pseudovirus (HPV PsV) expressing HSV-2 gB (HPV-gB) or gD (HPV-gD) constructs to target different subcellular compartments. HPV PsV expressing a secreted ectodomain of gB (gBsec) or gD (gDsec), but not PsV expressing a cytoplasmic or membrane-bound form, induced circulating and intravaginal-tissue-resident memory CD8(+) T cells that were able to secrete gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) as well as moderate levels of serum HSV neutralizing antibodies. Combined immunization with HPV-gBsec and HPV-gDsec (HPV-gBsec/gDsec) vaccines conferred longer survival after vaginal challenge with HSV-2 than immunization with HPV-gBsec or HPV-gDsec alone. HPV-gBsec/gDsec ivag vaccination was associated with a reduced severity of genital lesions and lower levels of viral shedding in the genital tract after HSV-2 challenge. In contrast, intramuscular vaccination with a soluble truncated gD protein (gD2t) in alum and monophosphoryl lipid A (MPL) elicited high neutralizing antibody titers and improved survival but did not reduce genital lesions and viral shedding. Vaccination combining ivag HPV-gBsec/gDsec and i.m. gD2t-alum-MPL improved survival and reduced genital lesions and viral shedding. Finally, high levels of circulating HSV-2-specific CD8(+) T cells, but not serum antibodies, correlated with reduced viral shedding. Taken together, our data underscore the potential of HPV PsV as a platform for a topical mucosal vaccine to control local manifestations of primary HSV-2 infection. IMPORTANCE: Genital herpes is a highly prevalent chronic disease caused by HSV infection. To date, there is no licensed vaccine against HSV infection. This study describes intravaginal vaccination with a nonreplicating HPV-based vector expressing HSV glycoprotein antigens. The data presented in this study underscore the potential of HPV-based vectors as a platform for the induction of genital-tissue-resident memory T cell responses and the control of local manifestations of primary HSV infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Herpes Genital/prevenção & controle , Vacinas contra Herpesvirus/imunologia , Papillomaviridae/genética , Proteínas do Envelope Viral/imunologia , Eliminação de Partículas Virais , Administração Intravaginal , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Herpes Genital/imunologia , Herpes Genital/patologia , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/imunologia , Vacinas contra Herpesvirus/administração & dosagem , Vacinas contra Herpesvirus/genética , Memória Imunológica , Injeções Intramusculares , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Análise de Sobrevida , Fator de Necrose Tumoral alfa/metabolismo , Vacinação/métodos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...