Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Regul Toxicol Pharmacol ; 150: 105629, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657894

RESUMO

The world's hunger for novel food ingredients drives the development of safe, sustainable, and nutritious novel food products. For foods containing novel proteins, potential allergenicity of the proteins is a key safety consideration. One such product is a fungal biomass obtained from the fermentation of Rhizomucor pusillus. The annotated whole genome sequence of this strain was subjected to sequence homology searches against the AllergenOnline database (sliding 80-amino acid windows and full sequence searches). In a stepwise manner, proteins were designated as potentially allergenic and were further compared to proteins from commonly consumed foods and from humans. From the sliding 80-mer searches, 356 proteins met the conservative >35% Codex Alimentarius threshold, 72 of which shared ≥50% identity over the full sequence. Although matches were identified between R. pusillus proteins and proteins from allergenic food sources, the matches were limited to minor allergens from these sources, and they shared a greater degree of sequence homology with those from commonly consumed foods and human proteins. Based on the in silico analysis and a literature review for the source organism, the risk of allergenic cross-reactivity of R. pusillus is low.


Assuntos
Alérgenos , Biomassa , Rhizomucor , Alérgenos/imunologia , Rhizomucor/imunologia , Humanos , Ingredientes de Alimentos , Simulação por Computador , Hipersensibilidade Alimentar/imunologia , Proteínas Fúngicas/imunologia
2.
GM Crops Food ; 15(1): 40-50, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38471133

RESUMO

Since the first genetically engineered or modified crops or organisms (GMO) were approved for commercial production in 1995, no new GMO has been proven to be a hazard or cause harm to human consumers. These modifications have improved crop efficiency, reduced losses to insect pests, reduced losses to viral and microbial plant pathogens and improved drought tolerance. A few have focused on nutritional improvements producing beta carotene in Golden Rice. Regulators in the United States and countries signing the CODEX Alimentarius and Cartagena Biosafety agreements have evaluated human and animal food safety considering potential risks of allergenicity, toxicity, nutritional and anti-nutritional risks. They consider risks for non-target organisms and the environment. There are no cases where post-market surveillance has uncovered harm to consumers or the environment including potential transfer of DNA from the GMO to non-target organisms. In fact, many GMOs have helped improve production, yield and reduced risks from chemical insecticides or fungicides. Yet there are generic calls to label foods containing any genetic modification as a GMO and refusing to allow GM events to be labeled as organic. Many African countries have accepted the Cartagena Protocol as a tool to keep GM events out of their countries while facing food insecurity. The rationale for those restrictions are not rational. Other issues related to genetic diversity, seed production and environmental safety must be addressed. What can be done to increase acceptance of safe and nutritious foods as the population increases, land for cultivation is reduced and energy costs soar?


Assuntos
Ração Animal , Produtos Agrícolas , Animais , Humanos , Plantas Geneticamente Modificadas/genética , Medição de Risco/métodos , Produtos Agrícolas/genética , Engenharia Genética
3.
J Appl Toxicol ; 43(7): 993-1012, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36680512

RESUMO

There is an economic interest, both for food security and for the non-meat-eating population, in the development of novel, sustainable sources of high-quality protein. The green algae Chlamydomonas reinhardtii has already been developed for this purpose, and the closely related species, Chlamydomonas debaryana, is a complementary source that also presents some additional advantages, such as reduced production cost. To determine whether C. debaryana may have a similar safety profile to that of C. reinhardtii, a wild type strain was obtained, designated TS04 after confirmation of its identity, and subjected to a battery of preclinical studies. Genetic toxicity was evaluated using a bacterial reverse mutation test, an in vitro mammalian chromosomal aberration test, and an in vivo mammalian micronucleus test in a mouse model. No genotoxic potential (e.g., mutagenicity and clastogenicity) was observed in these tests under the employed conditions up to maximum recommended concentrations or doses. To assess general toxicity, a 90-day repeated-dose oral toxicity study was conducted in rats. No mortality or adverse effects were observed, and no target organs were identified up to the maximum feasible dose, due to solubility, of 4,000 mg/kg bw/day. The no-observed-adverse-effect level was determined as the highest dose tested. A digestibility study in simulated gastric fluid was conducted and determined that TS04 has low allergenic potential, exhibiting rapid digestion of proteins. Due to the negative results of our evaluation, it is reasonable to proceed with further development and additional investigations to contribute towards a safety assessment of the proposed use in food for human consumption.


Assuntos
Chlamydomonas , Clorófitas , Camundongos , Ratos , Humanos , Animais , Biomassa , Nível de Efeito Adverso não Observado , Aberrações Cromossômicas , Chlamydomonas/metabolismo , Mamíferos
4.
Food Chem Toxicol ; 168: 113342, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35963473

RESUMO

Cultivation of filamentous fungi to produce sustainable, nutrient rich meat replacements has recently attracted significant commercial and research interest. Here, we report evidence for the safety and nutritional value of Neurospora crassa mycoprotein, a whole mycelium food ingredient produced by fermentation and minimal downstream processing. N. crassa has a long history of human use in fermented foods and in molecular biology research. A survey of studies that used N. crassa in animal feed revealed no adverse effects to the health of the animals. Furthermore, a review of the literature found no reports of confirmed allergenicity or toxicity in humans involving N. crassa. Genomic toxigenicity analysis and in vitro testing did not identify any toxins in N. crassa mycoprotein. Two independent genomic allergenicity studies did not identify proteins that would be considered a particular risk for allergenic potential. Furthermore, nutritional analysis demonstrated that N. crassa mycoprotein is a good source of complete protein and is rich in fiber, potassium, and iron. Taken together, the presented data and the history of human use without evidence of human or animal harm indicate that foods containing N. crassa can generally be regarded as safe.


Assuntos
Ingredientes de Alimentos , Neurospora crassa , Animais , Humanos , Ferro/metabolismo , Carne , Neurospora crassa/genética , Neurospora crassa/metabolismo , Potássio/metabolismo
5.
Front Allergy ; 3: 900573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769554

RESUMO

Celiac disease (CeD) is an autoimmune enteropathy induced by prolamin and glutelin proteins in wheat, barley, rye, and triticale recognized by genetically restricted major histocompatibility (MHC) receptors. Patients with CeD must avoid consuming these proteins. Regulators in Europe and the United States expect an evaluation of CeD risks from proteins in genetically modified (GM) crops or novel foods for wheat-related proteins. Our database includes evidence-based causative peptides and proteins and two amino acid sequence comparison tools for CeD risk assessment. Sequence entries are based on the review of published studies of specific gluten-reactive T cell activation or intestinal epithelial toxicity. The initial database in 2012 was updated in 2018 and 2022. The current database holds 1,041 causative peptides and 76 representative proteins. The FASTA sequence comparison of 76 representative CeD proteins provides an insurance for possible unreported epitopes. Validation was conducted using protein homologs from Pooideae and non-Pooideae monocots, dicots, and non-plant proteins. Criteria for minimum percent identity and maximum E-scores are guidelines. Exact matches to any of the 1,041 peptides suggest risks, while FASTA alignment to the 76 CeD proteins suggests possible risks. Matched proteins should be tested further by CeD-specific CD4/8+ T cell assays or in vivo challenges before their use in foods.

6.
Food Chem Toxicol ; 166: 113005, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35636642

RESUMO

Fy Protein™ (Nutritional Fungi Protein) is a macro-ingredient produced from the fermentation of the fungal microorganism Fusarium strain flavolapis, isolated from springs in Yellowstone National Park. Fy Protein contains all of the essential amino acids plus fiber, fat, carbohydrates, vitamins, and minerals and is developed as an alternative to animal-based protein foods such as meat and dairy. Fy Protein's nutritional, digestibility, genotoxicity, allergenicity, toxicity, secondary metabolites, and pathogenicity were evaluated. Fy Protein did not show mutagenic or genotoxic potential in in vitro tests. In an allergenicity review, Fy Protein was found to be of low allergenic potential. In a 90-day sub chronic dietary study in rats, administration of Fy Protein did not produce any significant toxicologic manifestations, and the no observed effect level (NOAEL) was the highest-level fed of 150,000 ppm (15% in the diet). Regulated secondary metabolites from fungi (termed mycotoxins) were non-detectable and below regulated levels using quantitative analytical techniques. A literature review was completed to identify the potential human pathogenicity of Fusarium sp., showing that Fusarium rarely infects humans, with infections seldom developing even in immunocompromised individuals. The results of these studies confirm that Fy Protein from fermented F. str. flavolapis has low toxicological, genotoxic, pathogenic, and allergenic potential under the conditions tested and anticipated use.


Assuntos
Fusarium , Micotoxinas , Alérgenos/metabolismo , Animais , Fibras na Dieta/metabolismo , Fermentação , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Fusarium/metabolismo , Humanos , Micotoxinas/análise , Ratos
7.
Foods ; 11(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35267339

RESUMO

Gluten is composed of prolamin and glutelin proteins from several related grains. Because these proteins are not present in identical ratios in the various grains and because they have some differences in sequence, the ability to accurately quantify the overall amount of gluten in various food matrices to support gluten-free labeling is difficult. Four sandwich ELISAs (the R-Biopharm AG R5 RIDASCREEN®, the Neogen Veratox® R5, the Romer Labs AgraQuant® G12, and the Morinaga Wheat kits) were evaluated for their performance to quantify gluten concentrations in various foods and ingredients. The Morinaga and AgraQuant® G12 tests yielded results comparable to the two R5 kits for most, but not for certain, foods. The results obtained with the Morinaga kit were lower when compared to the other kits for analyzing powders of buckwheat and several grass-based products. All four kits were capable of detecting multiple gluten-containing grain sources including wheat, rye, barley, semolina, triticale, spelt, emmer, einkorn, Kamut™, and club wheat. Users of the ELISA kits should verify the performance in their hands, with matrices that are typical for their specific uses. The variation in results for some food matrices between test methods could result in trade disputes or regulatory disagreements.

8.
J Appl Toxicol ; 42(7): 1253-1275, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35104912

RESUMO

Chlamydomonas reinhardtii is a nonpathogenic, nontoxigenic green algae used as a sustainable source of protein in foods. In order to mimic meat-like qualities, a strain rich in protoporphyrin IX (PPIX), an endogenous heme/chlorophyll precursor, was developed using an evolution and selection strategy, and investigations were carried out to evaluate the safety of the novel strain, C. reinhardtii (red), strain TAI114 (TAI114). Digestibility and proteomic evaluations were conducted to determine whether any potentially allergenic or toxic proteins occurred as the result of the mutation process. The genotoxic potential of pure PPIX was evaluated using a bacterial reverse mutation test, an in vitro mammalian chromosomal aberration test, and an in vivo mammalian micronucleus test. Finally, the novel TAI114 biomass was evaluated for general toxicity and identification of target organs in a 90-day repeated-dose oral toxicity study in rats. All proteins were rapidly degraded in pepsin at pH 2.0 suggesting low allergenic potential. The proteomic evaluation indicated that TAI114 biomass contains typical C. reinhardtii proteins. PPIX was unequivocally negative for genotoxic potential and no target organs or adverse effects were observed in rats up to the maximum feasible dose of 4000 mg/kg bw/day TAI114 biomass, which was determined to be the no-observed-adverse-effect-level (NOAEL). These results support the further development and risk characterization of TAI114 biomass as a novel ingredient for use in the meat analogue category of food.


Assuntos
Proteômica , Protoporfirinas , Animais , Biomassa , Dano ao DNA , Mamíferos/metabolismo , Protoporfirinas/metabolismo , Protoporfirinas/toxicidade , Ratos
9.
Allergy ; 77(7): 2038-2052, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35102560

RESUMO

Cannabis is the most widely used recreational drug in the world. Cannabis sativa and Cannabis indica have been selectively bred to develop their psychoactive properties. The increasing use in many countries has been accelerated by the COVID-19 pandemic. Cannabis can provoke both type 1 and type 4 allergic reactions. Officially recognized allergens include a pathogenesis-related class 10 allergen, profilin, and a nonspecific lipid transfer protein. Other allergens may also be relevant, and recognition of allergens may vary between countries and continents. Cannabis also has the potential to provoke allergic cross-reactions to plant foods. Since cannabis is an illegal substance in many countries, research has been hampered, leading to challenges in diagnosis since no commercial extracts are available for testing. Even in countries such as Canada, where cannabis is legalized, diagnosis may rely solely on the purchase of cannabis for prick-to-prick skin tests. Management consists of avoidance, with legal issues hindering the development of other treatments such as immunotherapy. Education of healthcare professionals is similarly lacking. This review aimed to summarize the current status of cannabis allergy and proposes recommendations for the future management of this global issue.


Assuntos
COVID-19 , Cannabis , Hipersensibilidade Alimentar , Hipersensibilidade , Alérgenos , Antígenos de Plantas , Cannabis/efeitos adversos , Consenso , Hipersensibilidade Alimentar/diagnóstico , Hipersensibilidade Alimentar/epidemiologia , Hipersensibilidade Alimentar/etiologia , Humanos , Hipersensibilidade/diagnóstico , Imunoglobulina E , Pandemias , Testes Cutâneos
10.
Food Chem Toxicol ; 162: 112878, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35196545

RESUMO

Microbial proteins are potentially important alternatives to animal protein. A safety assessment was conducted on a Clostridium protein which can serve as a high-quality protein source in human food. A battery of toxicity studies was conducted comprising a 14-day dose-range finding dietary study in rats, 90-day dietary study in rats and in vitro genotoxicity studies. The allergenic potential was investigated by bioinformatics analysis. In the 90-day feeding study, rats were fed diets containing 0, 5.0, 7.5, and 10% Clostridium protein. The Clostridium protein-containing diets were well-tolerated and no adverse effects on the health or growth were observed. Significant reductions in neutrophil counts were observed in all female rats compared to controls, which were slightly outside of reference ranges. These effects were not deemed to be adverse due to the absence of comparable findings in male rats and high physiological variability of measured values within groups. A No-Observed-Adverse-Effect-Level (NOAEL) of at least 10% Clostridium protein, the highest dose tested and corresponding to 5,558 and 6,671 mg/kg body weight/day for male and female rats, respectively, was established. No evidence of genotoxicity was observed and the allergenic potential was low. These results support the use of Clostridium protein as a food ingredient.

11.
PLoS One ; 16(10): e0258298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34637470

RESUMO

Papaya ringspot virus biotype-P is a detrimental pathogen of economically important papaya and cucurbits worldwide. The mutation prone feature of this virus perhaps accounts for its geographical dissemination. In this study, investigations of the atypical PRSV-P strain was conducted based on phylogenetic, recombination and genetic differentiation analyses considering of it's likely spread across India and Bangladesh. Full length genomic sequences of 38 PRSV isolates and 35 CP gene sequences were subjected to recombination analysis. A total of 61 recombination events were detected in aligned complete PRSV genome sequences. 3 events were detected in complete genome of PRSV strain PK whereas one was in its CP gene sequence. The PRSV-PK appeared to be recombinant of a major parent from Bangladesh. However, the genetic differentiation based on full length genomic sequences revealed less frequent gene flow between virus PRSV-PK and the population from America, India, Colombia, other Asian Countries and Australia. Whereas, frequent gene flow exists between Pakistan and Bangladesh virus populations. These results provided evidence correlating geographical position and genetic distances. We speculate that the genetic variations and evolutionary dynamics of this virus may challenge the resistance developed in papaya against PRSV and give rise to virus lineage because of its atypical emergence where geographic spread is already occurring.


Assuntos
Carica/genética , Carica/virologia , Evolução Molecular , Variação Genética , Doenças das Plantas/genética , Potyvirus/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Fluxo Gênico , Genoma Viral , Funções Verossimilhança , Filogenia , Recombinação Genética , Estatística como Assunto
12.
Food Chem Toxicol ; 151: 112117, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33722604

RESUMO

Recent studies have demonstrated silk fibroin protein's (SF) ability to extend the shelf life of foods by mitigating the hallmarks of spoilage, namely oxidation and dehydration. Due to the potential for this protein to become more widespread, its safety was evaluated comprehensively. First, a bacterial reverse mutation test (Ames test) was conducted in five bacterial strains. Second, an in vivo erythrocyte test was conducted with Sprague Dawley rats at doses up to 1,000mg/kg-bw/day. Third, a range-finder study was conducted with Sprague Dawley rats at the highest consumption amount given solubility and oral gavage volume constrains (500mg/kg-bw/day). Fourth, a 28-day sub-chronic study in Sprague Dawley rats was conducted with the high dose set at 500mg/kg-bw/day, as limited by solubility of the protein in a single-gavage per-day study. Fifth, an in vitro pepsin digestion assay was performed to assess the potential for protein allergenicity. Sixth, allergenic potential was further assessed using liquid chromatography-mass spectroscopy for detection of allergenic insect proteins. Seventh, the SF protein sequences were subjected to bioinformatic analyses. Together, these studies raise no mutagenic, genotoxic, toxicological, or allergenic concerns with the oral consumption of silk fibroin.


Assuntos
Bombyx/metabolismo , Fibroínas/toxicidade , Hipersensibilidade Alimentar/etiologia , Administração Oral , Animais , Bombyx/crescimento & desenvolvimento , Feminino , Fibroínas/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade
13.
Allergy ; 76(8): 2383-2394, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33655520

RESUMO

Until recently, glycan epitopes have not been documented by the WHO/IUIS Allergen Nomenclature Sub-Committee. This was in part due to scarce or incomplete information on these oligosaccharides, but also due to the widely held opinion that IgE to these epitopes had little or no relevance to allergic symptoms. Most IgE-binding glycans recognized up to 2008 were considered to be "classical" cross-reactive carbohydrate determinants (CCD) that occur in insects, some helminths and throughout the plant kingdom. Since 2008, the prevailing opinion on lack of clinical relevance of IgE-binding glycans has been subject to a reevaluation. This was because IgE specific for the mammalian disaccharide galactose-alpha-1,3-galactose (alpha-gal) was identified as a cause of delayed anaphylaxis to mammalian meat in the United States, an observation that has been confirmed by allergists in many parts of the world. Several experimental studies have shown that oligosaccharides with one or more terminal alpha-gal epitopes can be attached as a hapten to many different mammalian proteins or lipids. The classical CCDs also behave like haptens since they can be expressed on proteins from multiple species. This is the explanation for extensive in vitro cross-reactivity related to CCDs. Because of these developments, the Allergen Nomenclature Sub-Committee recently decided to include glycans as potentially allergenic epitopes in an adjunct section of its website (www.allergen.org). In this article, the features of the main glycan groups known to be involved in IgE recognition are revisited, and their characteristic structural, functional, and clinical features are discussed.


Assuntos
Alérgenos , Imunoglobulina E , Animais , Carboidratos , Reações Cruzadas , Epitopos , Humanos
14.
Food Chem Toxicol ; 147: 111888, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33276067

RESUMO

Potential proteins from three novel food sources (Chlorella variabilis, Galdieria sulphuraria, and Fusarium strain flavolapis) were predicted from genomic sequences and were evaluated for potential risks of allergic cross-reactivity by comparing the predicted amino acid sequences against the allergens in the www.AllergenOnline.org (AOL) database. The preliminary analysis used CODEX Alimentarius limits of >35% identity over 80 amino acids to evaluate the predicted proteins which include many evolutionarily conserved proteins. Regulators might expect clinical serum IgE tests based on identity matches above the criteria if the proteins were introduced in genetically engineered crops. Some regulators have the same expectations for proteins in novel foods. To address the inequality of extensively conserved sequences, we compared the predicted proteins from curated genomes of 23 highly diverse allergenic species from animals, plants and arthropods as well as humans to AOL sequences and compiled identities. Identity matches greater than CODEX limits (>35% ID over 80 AA) are common for many proteins that are conserved through extensive evolution but are not predictive of published allergy risks based on observed taxonomic cross-reactivity. Therefore, we recommend changes in the allergen databases or methods of identifying matches for risk evaluation of new food sources. Our results provide critical data for redefining allergens in AOL or for providing guidance on more predictive sequence identity matches for risk assessment of possible risks of food allergy.


Assuntos
Alérgenos , Bases de Dados Factuais , Hipersensibilidade Alimentar , Genoma de Planta , Internet , Plantas/genética , Plantas/metabolismo , Reações Cruzadas , Humanos , Imunoglobulina E
15.
Food Chem Toxicol ; 147: 111866, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33217527

RESUMO

Identification, purification and characterization of allergens is crucial to the understanding of IgE-mediated disease. Immunologic and structural studies with purified allergens is essential for understanding relative immunogenicity and cross-reactivity. In this work, the complex soybean 7S vicilins (Gly m 5) with three subunits and 11S legumins (Gly m 6) with five subunits were purified and characterized along with purified peanut allergens (Ara h 1, 2, 3, and 6) by label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). Individual subjects plasma IgE binding was tested from subjects allergic to soybeans and or peanuts by immunoblotting, ImmunoCAP™ and ISAC™ ImmunoCAP chip, comparing these soybean proteins with those of purified peanut allergens; vicilin (Ara h 1), 2S albumin (Ara h 2 and Ara h 6) and 11S globulin (Ara h 3). Results show differences between methods and subjects demonstrating the complexity of finding answers to questions of cross-reactivity.


Assuntos
Antígenos de Plantas/imunologia , Arachis/química , Globulinas/química , Glycine max/química , Imunoglobulina E , Proteínas de Armazenamento de Sementes/química , Proteínas de Soja/química , Sequência de Aminoácidos , Antígenos de Plantas/química , Cromatografia Líquida , Reações Cruzadas , Humanos , Hipersensibilidade a Amendoim , Ligação Proteica , Espectrometria de Massas em Tandem
16.
J Allergy Clin Immunol Pract ; 8(8): 2506-2514, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32888526

RESUMO

Allergenic source materials include pollen, molds, animal dander, and insects; food allergens from nuts, grains, and animals; venoms; and salivary proteins from insects and ticks. Clinical diagnostic tests have used heterogeneous extracts from allergen source materials for skin prick tests (SPTs). In vitro laboratory methods using immunoassays or microarrays can detect serum IgE directed against allergenic proteins where clinical testing may not be suitable. Clinicians rely primarily on licensed commercial extracts of allergens for SPTs. Manufacturers and regulatory agencies have standardized selected extracts for identity, composition, and potency. Allergen sources contain multiple proteins. The IgE antibody responses to these proteins vary between allergic subjects as does the quantity of specific IgE. Component-resolved molecular diagnostics can be used to improve the specificity of allergy testing and resolve clinical cross-reactivities that may affect treatment outcomes. This clinical commentary will review methods for the production, evaluation, and standardization of allergen extracts from the perspective of diagnostic testing that may be useful for allergists in practice.


Assuntos
Alérgenos , Imunoglobulina E , Animais , Humanos , Extratos Vegetais , Pólen , Testes Cutâneos
17.
Food Chem Toxicol ; 141: 111398, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32437892

RESUMO

Currently no validated animal model is predictive of human responses in ranking purified dietary proteins in the prevalence or potency of food allergy in humans. Since the gastrointestinal microbiota is thought to influence oral tolerance, we hypothesize that a germ-free mouse model will more accurately predict atopic human responses than conventional mice. Germ-free C3H/HeN mice were immunized with 60 µg Ara h 2, BLG, or LOX by three weekly intraperitoneal (IP) injections with alum adjuvant. One week following the final immunization an IP challenge of 500 µg of Ara h 2, BLG, or LOX was administered. Thirty minutes post-challenge clinical scores were graded and body temperatures recorded. The presence of protein-specific IgE and mast cell protease concentrations in mouse sera were determined using ELISA. Upon challenge germ-free mice sensitized with Ara h 2 and BLG exhibited significantly more severe clinical scores compared to germ-free mice immunized with LOX. Hypothermic responses in challenged mice differed between the three proteins post-challenge. Results indicate that this model can differentiate between potent and non-allergens based on temperature drop, clinical scores, and biomarkers. Additional proteins with known human exposure and allergenicity are needed to confirm the predictive accuracy.


Assuntos
Alérgenos/imunologia , Proteínas Alimentares/imunologia , Animais , Vida Livre de Germes , Camundongos , Camundongos Endogâmicos C3H
18.
Mol Nutr Food Res ; 64(8): e1900923, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32067335

RESUMO

SCOPE: Insects are a potentially environmentally friendly alternative dietary protein source to supplement mammalian and fish sources, but potential allergenic risks are a concern. Consumption of insects may result in anaphylaxis and has been implicated in cross-reactivity with shellfish. Many allergenic proteins may be involved in cross-reactivity, including tropomyosin (TM). The uniformity of TM cross-reactivity among edible insects is unknown. Candidate edible insects for variability in shellfish IgE cross-reactivity are investigated. METHODS AND RESULTS: Selected insects and known related sources of allergens are extracted and probed by immunoblot with sera/plasma from patients sensitized to insects or shellfish. Quantification of TM in these extracts is performed using mass spectrometry. A comparison of the quantity of TM and the IgE reactivity of TM from these insects is performed. Distinct patterns of IgE cross-reactivity are observed with three insect species showing diminished reactivity. This pattern is not consistent with the amount of TM present in these insects, or with overall sequence homology. CONCLUSION: Insects display a diversity of TM-associated IgE reactivity. It is likely that minor sequence features and/or structural effects are primarily responsible. Additionally, it is demonstrated that some insect species may present significantly less IgE cross-reactivity to shrimp than do others.


Assuntos
Insetos Comestíveis/imunologia , Hipersensibilidade Alimentar/imunologia , Imunoglobulina E/imunologia , Tropomiosina/imunologia , Adulto , Animais , Reações Cruzadas , Feminino , Humanos , Soros Imunes , Imunoglobulina E/metabolismo , Proteínas de Insetos/imunologia , Masculino , Pessoa de Meia-Idade , Frutos do Mar , Hipersensibilidade a Frutos do Mar/imunologia , Espectrometria de Massas em Tandem , Tropomiosina/genética
19.
Front Immunol ; 10: 2600, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798576

RESUMO

The World Health Organization/International Union of Immunological Societies (WHO/IUIS) Allergen Nomenclature Sub-Committee was established in 1986 by leading allergists to standardize names given to proteins that cause IgE-mediated reactions in humans. The Sub-Committee's objective is to assign unique names to allergens based on a critical analysis of confidentially submitted biochemical and clinical data from researchers, often prior to publication to preserve consistency. The Sub-Committee maintains and revises the database as the understanding of allergens evolves. This report summarizes recent developments that led to updates in classification of cockroach group 1 and 5 allergens to animal as well as environmental and occupational allergens. Interestingly, routes, doses, and frequency of exposure often affects allergenicity as does the biochemical properties of the proteins and similarity to self and other proteins. Information required by the Sub-Committee now is more extensive than previously as technology has improved. Identification of new allergens requires identification of the amino acid sequence and physical characteristics of the protein as well as demonstration of IgE binding from subjects verified by described clinical histories, proof of the presence of the protein in relevant exposure substances, and demonstration of biological activity (skin prick tests, activation of basophils, or mast cells). Names are assigned based on taxonomy with the abbreviation of genus and species and assignment of a number, which reflects the priority of discovery, but more often now, the relationships with homologous proteins in related species.


Assuntos
Alérgenos/classificação , Terminologia como Assunto , Alérgenos/química , Alérgenos/imunologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...