Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Polym Mater ; 4(1): 327-337, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35059643

RESUMO

Block copolymers (BCPs) consist of two or more covalently bound chemically distinct homopolymer blocks. These macromolecules have emerging applications in photonics, membrane separations, and nanolithography stemming from their self-assembly into regular nanoscale structures. Theory suggests that cyclic BCPs should form features up to 40% smaller than their linear analogs while also exhibiting superior thin-film stability and assembly dynamics. However, the complex syntheses required to produce cyclic polymers mean that a need for pure cyclic BCPs would present a challenge to large-scale manufacturing. Here, we employ dissipative particle dynamics simulations to probe the self-assembly behavior of cyclic/linear BCP blends, focusing on nanofeature size and interfacial width as these qualities are critical to nanopatterning applications. We find that for mixtures of symmetric cyclic and linear polymers with equivalent lengths, up to 10% synthetic impurity has a minimal impact on cyclic BCP feature dimensions and interfacial roughness. On the other hand, blending with cyclic BCPs provides a route to "fine-tune" linear BCP feature sizes. We analyze simulated blend domain spacings within the context of strong segregation theory and find significant deviations between simulation and theory that arise from molecular-level packing motifs not included in theory. These insights into blend self-assembly will assist experimentalists in rationally designing BCP materials for advanced nanolithography applications.

2.
J Chem Phys ; 145(12): 124710, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27782657

RESUMO

Theoretical descriptions of molecular-scale solvation frequently invoke contributions proportional to the solvent exposed area, under the tacit expectation that those contributions are tied to a surface tension for macroscopic surfaces. Here we examine the application of revised scaled-particle theory (RSPT) to extrapolate molecular simulation results for the wetting of molecular-to-meso-scale repulsive solutes in liquid water and decane to determine the interfacial free energies of hard, flat surfaces. We show that the RSPT yields interfacial free energies at ambient pressures that are consistently greater than that obtained from the liquid-vapor surface tensions of water and decane by ∼4%. Nevertheless, the hard surface and liquid-vapor interfacial free energies are parallel over a broad temperature range at 1 bar indicating similar entropic contributions. With increasing pressure, the hard, flat interfacial free energies exhibit a maximum in the vicinity of ∼1000 bars. This non-monotonic behavior in both water and decane reflects solvent dewetting at low pressures, followed by wetting at higher pressures as the solvents are pushed onto the solute. By comparing the results of RSPT against classic scaled-particle theory (CSPT), we show that CSPT systematically predicts greater entropic penalties for interface formation and makes inconsistent predictions between the pressure dependence of the interfacial free energy and solvent contact density with the solute surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...