Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(3): 1898-1914, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35104933

RESUMO

RAS is a major anticancer drug target which requires membrane localization to activate downstream signal transduction. The direct inhibition of RAS has proven to be challenging. Here, we present a novel strategy for targeting RAS by stabilizing its interaction with the prenyl-binding protein PDE6D and disrupting its localization. Using rationally designed RAS point mutations, we were able to stabilize the RAS:PDE6D complex by increasing the affinity of RAS for PDE6D, which resulted in the redirection of RAS to the cytoplasm and the primary cilium and inhibition of oncogenic RAS/ERK signaling. We developed an SPR fragment screening and identified fragments that bind at the KRAS:PDE6D interface, as shown through cocrystal structures. Finally, we show that the stoichiometric ratios of KRAS:PDE6D vary in different cell lines, suggesting that the impact of this strategy might be cell-type-dependent. This study forms the foundation from which a potential anticancer small-molecule RAS:PDE6D complex stabilizer could be developed.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/análise , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
2.
Bioorg Med Chem Lett ; 29(8): 1023-1029, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30773430

RESUMO

Fascin is an actin binding and bundling protein that is not expressed in normal epithelial tissues but overexpressed in a variety of invasive epithelial tumors. It has a critical role in cancer cell metastasis by promoting cell migration and invasion. Here we report the crystal structures of fascin in complex with a series of novel and potent inhibitors. Structure-based elaboration of these compounds enabled the development of a series with nanomolar affinities for fascin, good physicochemical properties and the ability to inhibit fascin-mediated bundling of filamentous actin. These compounds provide promising starting points for fascin-targeted anti-metastatic therapies.


Assuntos
Antineoplásicos/síntese química , Proteínas de Transporte/antagonistas & inibidores , Desenho de Fármacos , Proteínas dos Microfilamentos/antagonistas & inibidores , Pirazóis/química , Piridinas/química , Quinolonas/química , Antineoplásicos/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Humanos , Concentração Inibidora 50 , Proteínas dos Microfilamentos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Pirazóis/metabolismo , Piridinas/metabolismo , Quinolonas/metabolismo , Relação Estrutura-Atividade
3.
Mol Pharmacol ; 68(5): 1484-95, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16113085

RESUMO

We investigated the pharmacology of three novel compounds, Org 27569 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)-ethyl]-amide), Org 27759 (3-ethyl-5-fluoro-1H-indole-2-carboxylic acid [2-94-dimethylamino-phenyl)-ethyl]-amide), and Org 29647 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid (1-benzyl-pyrrolidin-3-yl)-amide, 2-enedioic acid salt), at the cannabinoid CB1 receptor. In equilibrium binding assays, the Org compounds significantly increased the binding of the CB1 receptor agonist [3H]CP 55,940 [(1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol], indicative of a positively cooperative allosteric effect. The same compounds caused a significant, but incomplete, decrease in the specific binding of the CB1 receptor inverse agonist [3H]SR 141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride], indicative of a limited negative binding cooperativity. Analysis of the data according to an allosteric ternary complex model revealed that the estimated affinity of each Org compound was not significantly different when the radioligand was [3H]CP 55,940 or [3H]SR 141716A. However, the estimated cooperatively factor for the interaction between modulator and radioligand was greater than 1 when determined against [3H]CP 55,940 and less than 1 when determined against [3H]SR 141716A. [3H]CP 55,940 dissociation kinetic studies also validated the allosteric nature of the Org compounds, because they all significantly decreased radioligand dissociation. These data suggest that the Org compounds bind allosterically to the CB1 receptor and elicit a conformational change that increases agonist affinity for the orthosteric binding site. In contrast to the binding assays, however, the Org compounds behaved as insurmountable antagonists of receptor function; in the reporter gene assay, the guanosine 5'-O-(3-[35S]thio)triphosphate binding assay and the mouse vas deferens assay they elicited a significant reduction in the Emax value for CB1 receptor agonists. The data presented clearly demonstrate, for the first time, that the cannabinoid CB1 receptor contains an allosteric binding site that can be recognized by synthetic small molecule ligands.


Assuntos
Receptor CB1 de Canabinoide/efeitos dos fármacos , Regulação Alostérica , Animais , Sítios de Ligação , Cicloexanóis/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Masculino , Camundongos , Piperidinas/metabolismo , Pirazóis/metabolismo , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto , Ducto Deferente/efeitos dos fármacos , Ducto Deferente/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...