Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mov Disord ; 25(13): 2176-82, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20669319

RESUMO

The purpose of this study was to characterise a novel family with very slowly progressive pure spinocerebellar ataxia (SCA) caused by a deletion in the inositol 1,4,5-triphosphate receptor 1 (ITPR1) gene on chromosome 3. This is a detailed clinical, genetic, and radiological description of the genotype. Deletions in ITPR1 have been shown to cause SCA15/SCA16 in six families to date. A further Japanese family has been identified with an ITPR1 point mutation. The exact prevalence is as yet unknown, but is probably higher than previously thought. The clinical phenotype of the family is described, and videotaped clinical examinations are presented. Serial brain magnetic resonance imaging studies were carried out on one affected individual, and genetic analysis was performed on several family members. Protein analysis confirmed the ITPR1 deletion. Affected subjects display a remarkably slow, almost pure cerebellar syndrome. Serial magnetic resonance imaging shows moderate cerebellar atrophy with mild inferior parietal and temporal cortical volume loss. Genetic analysis shows a deletion of 346,487 bp in ITPR1 (the second largest ITPR1 deletion reported to date), suggesting SCA15 is due to a loss of ITPR1 function. Western blotting of lymphoblastoid cell line protein confirms reduced ITPR1 protein levels. SCA15 is a slowly or nonprogressive pure cerebellar ataxia, which appears to be caused by a loss of ITPR1 function and a reduction in the translated protein. Patients with nonprogressive or slowly progressive ataxia should be screened for ITPR1 defects.


Assuntos
Deleção de Genes , Receptores de Inositol 1,4,5-Trifosfato/genética , Polimorfismo de Nucleotídeo Único/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Adulto , Saúde da Família , Feminino , Testes Genéticos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Ataxias Espinocerebelares/classificação
2.
J Cell Sci ; 122(Pt 14): 2424-35, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19549690

RESUMO

MAP1B is a developmentally regulated microtubule-associated phosphoprotein that regulates microtubule dynamics in growing axons and growth cones. We used mass spectrometry to map 28 phosphorylation sites on MAP1B, and selected for further study a putative primed GSK3 beta site and compared it with two nonprimed GSK3 beta sites that we had previously characterised. We raised a panel of phosphospecific antibodies to these sites on MAP1B and used it to assess the distribution of phosphorylated MAP1B in the developing nervous system. This showed that the nonprimed sites are restricted to growing axons, whereas the primed sites are also expressed in the neuronal cell body. To identify kinases phosphorylating MAP1B, we added kinase inhibitors to cultured embryonic cortical neurons and monitored MAP1B phosphorylation with our panel of phosphospecific antibodies. These experiments identified dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK1A) as the kinase that primes sites of GSK3 beta phosphorylation in MAP1B, and we confirmed this by knocking down DYRK1A in cultured embryonic cortical neurons by using shRNA. DYRK1A knockdown compromised neuritogenesis and was associated with alterations in microtubule stability. These experiments demonstrate that MAP1B has DYRK1A-primed and nonprimed GSK3 beta sites that are involved in the regulation of microtubule stability in growing axons.


Assuntos
Axônios/enzimologia , Córtex Cerebral/enzimologia , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fatores Etários , Animais , Axônios/efeitos dos fármacos , Células COS , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/embriologia , Chlorocebus aethiops , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Espectrometria de Massas , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/efeitos dos fármacos , Mutação , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Interferência de RNA , Ratos , Proteínas Recombinantes de Fusão , Serina , Medula Espinal/embriologia , Medula Espinal/enzimologia , Treonina , Transfecção , Quinases Dyrk
3.
Mol Cell Neurosci ; 28(3): 524-34, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15737742

RESUMO

In pheochromocytoma 12 (PC12) cells and sympathetic neurons, nerve growth factor (NGF) engagement with the tropomyosin-related tyrosine kinase (TrkA) receptor activates the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta), enabling it to phosphorylate the microtubule-associated protein 1B (MAP1B). GSK3beta phosphorylation of MAP1B acts as a molecular switch to regulate microtubule dynamics in growing axons, and hence the rate of axon growth. An important question relates to the identification of the upstream pathway linking the activation of GSK3beta with TrkA engagement. TrkA can utilise a number of intracellular signalling pathways, including the mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositol-3 kinase (PI3K) pathway. We now show, using pharmacological inhibitor studies of PC12 cells and sympathetic neurons in culture and in vitro kinase and activation assays, that the MAPK pathway, and not the PI3K pathway, links NGF engagement with the TrkA receptor to GSK3beta activation in PC12 cells and sympathetic neurons. We also show that activated GSK3beta is a small fraction of the total GSK3beta present in developing brain and that it is not part of a multiprotein complex. Thus, NGF drives increased neurite growth rates partly by coupling the MAPK pathway to the activation of GSK3beta and thereby phosphorylation of MAP1B.


Assuntos
Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Quinase 3 da Glicogênio Sintase/metabolismo , Cones de Crescimento/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Glicogênio Sintase Quinase 3 beta , Cones de Crescimento/ultraestrutura , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Crescimento Neural/metabolismo , Células PC12 , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor trkA/metabolismo , Gânglio Cervical Superior
4.
J Cell Sci ; 118(Pt 5): 993-1005, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15731007

RESUMO

Recent experiments show that the microtubule-associated protein (MAP) 1B is a major phosphorylation substrate for the serine/threonine kinase glycogen synthase kinase-3beta (GSK-3beta) in differentiating neurons. GSK-3beta phosphorylation of MAP1B appears to act as a molecular switch regulating the control that MAP1B exerts on microtubule dynamics in growing axons and growth cones. Maintaining a population of dynamically unstable microtubules in growth cones is important for axon growth and growth cone pathfinding. We have mapped two GSK-3beta phosphorylation sites on mouse MAP1B to Ser1260 and Thr1265 using site-directed point mutagenesis of recombinant MAP1B proteins, in vitro kinase assays and phospho-specific antibodies. We raised phospho-specific polyclonal antibodies to these two sites and used them to show that MAP1B is phosphorylated by GSK-3beta at Ser1260 and Thr1265 in vivo. We also showed that in the developing nervous system of rat embryos, the expression of GSK-3beta phosphorylated MAP1B is spatially restricted to growing axons, in a gradient that is highest distally, despite the expression of MAP1B and GSK-3beta throughout the entire neuron. This suggests that there is a mechanism that spatially regulates the GSK-3beta phosphorylation of MAP1B in differentiating neurons. Heterologous cell transfection experiments with full-length MAP1B, in which either phosphorylation site was separately mutated to a valine or, in a double mutant, in which both sites were mutated, showed that these GSK-3beta phosphorylation sites contribute to the regulation of microtubule dynamics by MAP1B.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Serina/química , Treonina/química , Animais , Axônios/metabolismo , Sítios de Ligação , Western Blotting , Células COS , Proliferação de Células , Córtex Cerebral/metabolismo , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Embrião de Mamíferos/metabolismo , Epitopos/química , Regulação da Expressão Gênica no Desenvolvimento , Glutationa Transferase/metabolismo , Glicogênio Sintase Quinase 3 beta , Immunoblotting , Camundongos , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/química , Mutagênese Sítio-Dirigida , Mutação , Neurônios/metabolismo , Oligonucleotídeos/química , Peptídeos/química , Fosforilação , Plasmídeos/metabolismo , Mutação Puntual , Ligação Proteica , Ratos , Ratos Wistar , Proteínas Recombinantes/química , Fatores de Tempo , Transfecção , Valina/química
5.
J Neurochem ; 87(4): 935-46, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14622124

RESUMO

We have recently shown that nerve growth factor (NGF) induces the phosphorylation of the microtubule-associated protein 1B (MAP1B) by activating the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta) in a spatio-temporal pattern in PC12 cells that correlates tightly with neurite growth. PC12 cells express two types of membrane receptor for NGF: TrkA receptors and p75NTR receptors, and it was not clear from our studies which receptor was responsible. We show here that brain-derived neurotrophic factor, which activates p75NTR but not TrkA receptors, does not stimulate GSK3beta phosphorylation of MAP1B in PC12 cells. Similarly, NGF fails to activate GSK3beta phosphorylation of MAP1B in PC12 cells that lack TrkA receptors but express p75NTR receptors (PC12 nnr). Chick ciliary ganglion neurons in culture lack TrkA receptors but express p75NTR and also fail to show NGF-dependent GSK3beta phosphorylation of MAP1B, whereas in rat superior cervical ganglion neurons in culture, NGF activation of TrkA receptors elicits GSK3beta phosphorylation of MAP1B. Finally, inhibition of TrkA receptor tyrosine kinase activity in PC12 cells and superior cervical ganglion neurons with K252a potently and dose-dependently inhibits neurite elongation while concomitantly blocking GSK3beta phosphorylation of MAP1B. These results suggest that the activation of GSK3beta by NGF is mediated through the TrkA tyrosine kinase receptor and not through p75NTR receptors.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fator de Crescimento Neural/farmacologia , Neurônios/metabolismo , Receptor trkA/metabolismo , Animais , Axônios/efeitos dos fármacos , Carbazóis/farmacologia , Células Cultivadas , Embrião de Galinha , Relação Dose-Resposta a Droga , Quinase 3 da Glicogênio Sintase/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta , Alcaloides Indólicos , Neuritos/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Células PC12 , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor de Fator de Crescimento Neural , Receptor trkA/antagonistas & inibidores , Receptores de Fator de Crescimento Neural/metabolismo
6.
Mol Cell Neurosci ; 20(2): 257-70, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12093158

RESUMO

Valproate (VPA) and lithium have been used for many years in the treatment of manic depression. However, their mechanisms of action remain poorly understood. Recent studies suggest that lithium and VPA inhibit GSK-3beta, a serine/threonine kinase involved in the insulin and WNT signaling pathways. Inhibition of GSK-3beta by high concentrations of lithium has been shown to mimic WNT-7a signaling by inducing axonal remodeling and clustering of synapsin I in developing neurons. Here we have compared the effect of therapeutic concentrations of lithium and VPA during neuronal maturation. VPA and, to a lesser extent, lithium induce clustering of synapsin I. In addition, lithium and VPA induce similar changes in the morphology of axons by increasing growth cone size, spreading, and branching. More importantly, both mood stabilizers decrease the level of MAP-1B-P, a GSK-3beta-phosphorylated form of MAP-1B in developing neurons, suggesting that therapeutic concentrations of these mood stabilizers inhibit GSK-3beta. In vitro kinase assays show that therapeutic concentrations of VPA do not inhibit GSK-3beta but that therapeutic concentrations of lithium partially inhibit GSK-3beta activity. Our results support the idea that both mood stabilizers inhibit GSK-3beta in developing neurons through different pathways. Lithium directly inhibits GSK-3beta in contrast to VPA, which inhibits GSK-3beta indirectly by an as-yet-unknown pathway. These findings may have important implications for the development of new strategies to treat bipolar disorders.


Assuntos
Antimaníacos/farmacologia , Axônios/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Sinapsinas/efeitos dos fármacos , Ácido Valproico/farmacologia , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Axônios/ultraestrutura , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Interações Medicamentosas/fisiologia , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase , Inibidores de Histona Desacetilases , Histona Desacetilases/metabolismo , Lítio/farmacologia , Camundongos , Proteínas Associadas aos Microtúbulos/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/metabolismo , Fibras Nervosas/ultraestrutura , Plasticidade Neuronal/fisiologia , Proteínas Proto-Oncogênicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sinapsinas/metabolismo , Proteínas Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...