Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 88(12): 123703, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29289224

RESUMO

A metallic core holder, fabricated from non-magnetic Hastelloy-C276, has been designed for Magnetic Resonance (MR) and Magnetic Resonance Imaging (MRI) of core plug samples at high pressures and temperatures. Core plug samples, 1.5″ in diameter and 2″ in length, can be tested in the core holder at elevated pressures and temperatures, up to 5000 psi and 80 °C. These are conditions commonly found in petroleum reservoirs. A radio frequency probe, which excites and detects magnetic resonance signals, was placed inside the metal vessel. Proximity to the sample improves the signal to noise ratio of the resulting measurements. The metallic core holder is positioned between the poles of a 0.2 T permanent magnet and subjected to rapidly switched magnetic field gradients as part of the imaging process. This switching induces eddy currents on the conductive core holder, which degrades the magnetic field gradient waveform in the sample space. The low electrical-conductivity of Hastelloy-C276 minimizes the duration and the magnitude of such eddy currents. A recently developed pre-equalization technique was employed to ensure that magnetic field gradient pulses, required for MRI, are near ideal in the sample space. A representative core flooding experiment was undertaken in conjunction with MR/MRI measurements.

2.
J Magn Reson ; 250: 17-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25459883

RESUMO

Magnetic resonance imaging (MRI) in the presence of metallic structures is very common in medical and non-medical fields. Metallic structures cause MRI image distortions by three mechanisms: (1) static field distortion through magnetic susceptibility mismatch, (2) eddy currents induced by switched magnetic field gradients and (3) radio frequency (RF) induced eddy currents. Single point ramped imaging with T1 enhancement (SPRITE) MRI measurements are largely immune to susceptibility and gradient induced eddy current artifacts. As a result, one can isolate the effects of metal objects on the RF field. The RF field affects both the excitation and detection of the magnetic resonance (MR) signal. This is challenging with conventional MRI methods, which cannot readily separate the three effects. RF induced MRI artifacts were investigated experimentally at 2.4 T by analyzing image distortions surrounding two geometrically identical metallic strips of aluminum and lead. The strips were immersed in agar gel doped with contrast agent and imaged employing the conical SPRITE sequence. B1 mapping with pure phase encode SPRITE was employed to measure the B1 field around the strips of metal. The strip geometry was chosen to mimic metal electrodes employed in electrochemistry studies. Simulations are employed to investigate the RF field induced eddy currents in the two metallic strips. The RF simulation results are in good agreement with experimental results. Experimental and simulation results show that the metal has a pronounced effect on the B1 distribution and B1 amplitude in the surrounding space. The electrical conductivity of the metal has a minimal effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA