Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 50(2): 557-574, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38193995

RESUMO

Research on antioxidant biomarkers can generate profound insights into the defense mechanisms of fish larvae against different stressors and can reveal manipulation strategies for improved growth and survival. However, the number of samples to process and unavailability of required infrastructure in larval-rearing facilities limit the immediate processing, requiring the preservation of specimens. Silver pompano (Trachinotus blochii), a potential marine aquaculture species, shows a low larval survival rate due to poorly developed antioxidant mechanism. In this context, 39 storage conditions, including three storage temperatures and different buffers, were scrutinized to select the most suitable preservation strategy for five important antioxidant biomarkers of fish larvae, viz. catalase activity, superoxide dismutase (SOD) activity, measurement of lipid peroxidation, reduced glutathione (GSH), and ascorbic acid contents. The paper proposes the optimum larval storage conditions for these five evaluated antioxidant biomarkers to generate similar results in preserved and non-preserved larval samples. Larval samples preserved in PBS at lower temperatures (- 20 °C and - 80 °C) are recommended for evaluating catalase activity and ascorbic acid content. Catalase activity can also be evaluated by preserving the larval samples at - 20 °C or - 80 °C without buffers. Larval samples held in PBS or without any buffers at - 20 °C and at - 80 °C were found to be suitable for SOD and GSH evaluation, respectively. Preservation in 50% glacial acetic acid at - 80 °C or - 20 °C was preferred for the lipid peroxidation assays. Apart from methodological perspectives, the paper provides insights into the dynamics of larval antioxidant profiles of T. blochii, for the first time.


Assuntos
Antioxidantes , Superóxido Dismutase , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Larva/metabolismo , Superóxido Dismutase/metabolismo , Ácido Ascórbico , Glutationa , Peixes/metabolismo , Biomarcadores/metabolismo , Peroxidação de Lipídeos , Estresse Oxidativo
2.
Artigo em Inglês | MEDLINE | ID: mdl-37851246

RESUMO

Management of crustacean shell waste (SW) through an eco-friendly technique is an environmental obligation to control pollution. The present study showed a novel approach through the simultaneous application of proteolytic and chitinolytic bacteria to effectively degrade unprocessed crustacean SW. For this, the bacteria with concurrent chitinolytic and proteolytic activity (Bacillus subtilis, Priestia megaterium, or Bacillus amyloliquefaciens) were applied either alone or in combination with one proteolytic strain (Paenibacillus alvei) in the unprocessed lobster, crab, and shrimp SW. The method degraded the shells with high deproteinization (> 90%) and demineralization efficiency (> 90%). The degradation was confirmed through scanning electron microscopy. The highest weight loss achieved with shrimp, crab, and lobster shells was 93.67%, 82.60%, and 83.33%, respectively. B. amyloliquefaciens + P. alvei combination produced the highest weight loss in crab and lobster SW, whereas all combinations produced statistically similar weight loss in shrimp SW. There was a concurrent production of N-acetyl glucosamine (up to 532.89, 627.87, and 498.95 mg/g of shrimp, lobster, and crab shell, respectively, with P. megaterium + P. alvei and B. amyloliquefaciens + P. alvei in all SW) and amino acids (4553.8, 648.89, 957.27 µg/g of shrimp, lobster, and crab shells, respectively with B. subtilis + P. alvei in shrimp and B. amyloliquefaciens + P. alvei in crab and lobster). Therefore, it is concluded that, for the first time, efficient degradation of crustacean shell waste was observed using chitinolytic and proteolytic bacterial fermentation with the obtention of byproducts, providing a basis for further application in SW management.

3.
Environ Sci Pollut Res Int ; 30(49): 107681-107692, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37740157

RESUMO

Vibrio parahaemolyticus, a potent human and aquatic pathogen, is usually found in estuaries and oceans. Human illness is associated with consuming uncooked/partially cooked contaminated seafood. The study on bivalve-associated V. parahaemolyticus revealed that the post-monsoon season had the highest bacterial abundance (9 ± 1.5 log cfu) compared to the monsoon season (8.03 ± 0.56 log cfu). Antimicrobial resistance (AMR) profiling was performed on 114 V. parahaemolyticus isolates obtained from bivalves. The highest AMR was observed against ampicillin (78%). Chloramphenicol was found to be effective against all the isolates. Multiple antibiotic resistance index values of 0.2 or higher were detected in 18% of the isolates. Molecular analysis of antimicrobial resistant genes (ARGs) revealed the high prevalence (100%) of the TEM-1 gene in the aquatic environment. After plasmid profiling and curing, 41.6% and 100% of the resistant isolates were found to be sensitive to ampicillin and cephalosporins, respectively, indicating the prevalence of plasmid-associated ARGs in the aquatic environment. A study to evaluate the antagonistic properties of Bacillus subtilis, Pseudomonas aeruginosa, and Bacillus amyloliquefaciens against V. parahaemolyticus isolates identified the potential of these bacteria to resist the growth of V. parahaemolyticus.


Assuntos
Bivalves , Vibrio parahaemolyticus , Animais , Humanos , Antibacterianos/farmacologia , Vibrio parahaemolyticus/genética , Alimentos Marinhos/microbiologia , Farmacorresistência Bacteriana/genética , Ampicilina
4.
Arch Microbiol ; 203(3): 1251-1258, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33128575

RESUMO

Nonribosomal peptide synthetases (NRPS) are multi-domain enzymes that have innumerably beneficial health applications. Realizing the significance of marine microorganisms in search for NRPS sequences, study was conducted for analysis of NRPS gene sequences of marine crab haemolymph bacteria for the first time. Strains belonging to five different species were found to have NRPS genes. The study generated NRPS sequences from four bacterial species, for which NRPS gene information was not available earlier. Two new putative adenylation domain signatures were identified from phylum Firmicutes. In silico analysis of amino acid sequences from four species showed less identity (42-50%) to the characterized NRPS compounds that integrate serine residue in active site, suggesting the novelty or uncharacterized nature. Altogether, the study warrants future research exploiting marine crab haemolymph bacteria, an unexplored niche of microbial genetic wealth to discover microbial novel NRPS genes and natural products using emerging tools and technologies.


Assuntos
Bactérias/genética , Braquiúros/microbiologia , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Sequência de Aminoácidos , Animais , Bactérias/enzimologia , Hemolinfa/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...