Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 199: 111312, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34019891

RESUMO

Herein we reported the effect of doping and addition of surfactant on SnO2 nanostructures for enhanced photocatalytic activity. Pristine SnO2, Zn-SnO2 and SDS-(Zn-SnO2) was prepared via simple co-precipitation method and the product was annealed at 600 °C to obtain a clear phase. The structural, optical, vibrational, morphological characteristics of the synthesized SnO2, Zn-SnO2 and SDS-(Zn-SnO2) product were investigated. SnO2, Zn-SnO2 and SDS-(Zn-SnO2) possess crystallite size of 20 nm, 19 nm and 18 nm correspondingly with tetragonal structure and high purity. The metal oxygen vibrations were present in FT-IR spectra. The obtained bandgap energies of SnO2, Zn-SnO2 and SDS-(Zn-SnO2) were 3.58 eV, 3.51 eV and 2.81 eV due to the effect of dopant and surfactant. This narrowing of bandgap helped in the photocatalytic activity. The morphology of the pristine sample showed poor growth of nanostructures with high level of agglomeration which was effectively reduced for other two samples. Product photocatalytic action was tested beneath visible light of 300 W. SDS-(Zn-SnO2) nanostructure efficiency showed 90% degradation of RhB dye which is 2.5 times higher than pristine sample. Narrow bandgap, crystallite size, better growth of nanostructures paved the way for SDS-(Zn-SnO2) to degrade the toxic pollutant. The superior performance and individuality of SDS-(Zn-SnO2) will makes it a potential competitor on reducing toxic pollutants from wastewater in future research.


Assuntos
Dopagem Esportivo , Nanoestruturas , Catálise , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos , Compostos de Estanho , Zinco
2.
Environ Res ; 197: 111032, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33757823

RESUMO

In this paper, the fabrication of ZnO tetrapod was investigated. It was synthesized by the thermal oxidation technique using metal zinc powder mixed with oxidizing agents such as hydrogen peroxide (H2O2) and ammonium persulfate ((NH4)2S2O8). The furnace heating temperature reached at 1000 °C in the air. The average diameter and length of a tetrapod leg for mixture with H2O2 from SEM were 45.3 nm and 1.57 µm, respectively. The oxygen vacancy (36%) of ZnO tetrapod with H2O2 was higher than 33% of ZnO tetrapod with only Zn. Growth mechanism of ZnO tetrapod was processed via the formation of Zn nucleus and growing the wurtzite structure. The growing directions of ZnO crystal conformed with the [0001] direction. ZnO tetrapod showed up the high resolution TEM image with the lattice spacing 0.252 nm. From these results, this work was indicated that H2O2 solution was a better oxidizing reaction helper to make ZnO tetrapod nanostructures than anything else.


Assuntos
Nanoestruturas , Óxido de Zinco , Peróxido de Hidrogênio , Nanoestruturas/toxicidade , Nanotecnologia , Oxidantes
3.
Environ Pollut ; 267: 115498, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32905901

RESUMO

Industrial dye effluents, which are a major wastage component that enter the natural environment, pose a significant health risk to human and aquatic life. Therefore, the effective removal of dye effluents is a major concern. Against this backdrop, in this study, a low-cost, earth-abundant, and ecofriendly ɤ-Fe2O3-PPy nanocomposite was prepared employing the conventional hydrothermal method. The morphology, functional groups, and elemental composition of ɤ-Fe2O3-PPy were characterized by XRD, SEM, XPS, and FTIR studies. Under optimized conditions, the prepared novel ɤ-Fe2O3-PPy nanocomposite showed a high methylene blue (MB) adsorption capacity of 464 mg/g, which is significantly higher than that of existing adsorbents such as CNTs and polymer-modified CNTs. The adsorption parameters such as pH, adsorbent dosage, and ionic strength were optimized to enhance the MB adsorption capacity. The adsorption results revealed that MB is adsorbed onto the adsorbent surface via electrostatic interactions, hydrogen bonding, and chemical binding interactions. In terms of practical application, the adsorbent's adsorption-desorption ability in conjunction with magnetic separation was investigated; the prepared ɤ-Fe2O3-PPy nanocomposite exhibited excellent adsorption and desorption efficiencies over more than seven adsorption-desorption cycles.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Humanos , Cinética , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...