Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Shock ; 46(1): 60-6, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26844974

RESUMO

It has been shown that microcirculation is hypersensitized to endothelin1 (ET-1) following endotoxin (lipopolysaccharide [LPS]) treatment leading to an increased vasopressor response. This may be related in part to decreased activation of endothelial nitric oxide synthase (eNOS) by ET-1. eNOS can also be uncoupled to produce superoxide (O2). This aberrant eNOS activity could further contribute to the hyperconstriction and injury caused by ET-1 following LPS. We therefore tested whether LPS affects ROS production by vascular endothelial cells and whether and how this effect is altered by ET-1. Human umbilical vein endothelial cells (HUVEC) or human microvascular endothelial cells (HMEC) were subjected to a 6-h treatment with LPS (250 ng/mL) or LPS and sepiapterin (100 µM) followed by a 30-min treatment with 100 µM L-Iminoethyl Ornithine (L-NIO) an irreversible eNOS inhibitor and 30-min treatment with ET-1 (10 nM). Conversion of [H]L-arginine to [H]L-citrulline was used to measure eNOS activity. Superoxide dismutase (SOD) inhibitable reduction of Cytochrome-C, dihydro carboxy fluorescein (DCF), and Mitosox was used to estimate ROS. LT-SDS PAGE was used to assess the degree of monomerization of the eNOS homodimer. Stimulation of HUVECs with ET-1 significantly increased NO synthesis by 1.4-fold (P < 0.05). ET-1 stimulation of LPS-treated HUVECs failed to increase NO production. Western blot for eNOS protein showed no change in eNOS protein levels. LPS alone resulted in an insignificant increase in ROS production as measured by cytochrome C that was increased 4.6-fold by ET-1 stimulation (P < 0.05). L-NIO significantly decreased ET-1-induced ROS production (P < 0.05). Sepiapterin significantly decreased ROS production in both; unstimulated and ET-1-stimulated LPS-treated groups, but did not restore NO production. DCF experiments confirmed intracellular ROS while Mitosox suggested a non-mitochondrial source. ET-1 treatment following a chronic LPS stress significantly monomerized the eNOS homodimer that was inhibited by sepiapterin loading. The two concomitant phenomena of decreased NO production and increased ROS formation seem to be multifactorial in nature with ROS production dependent upon pterin availability.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotelina-1/farmacologia , Lipopolissacarídeos/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Superóxidos/metabolismo , Linhagem Celular , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
2.
Hum Mol Genet ; 22(2): 300-12, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23077214

RESUMO

We asked whether key morphogenetic signaling pathways interact with 22q11 gene dosage to modulate the severity of cranial or cardiac anomalies in DiGeorge/22q1 deletion syndrome (22q11DS). Sonic hedgehog (Shh) and retinoic acid (RA) signaling is altered in the brain and heart-clinically significant 22q11DS phenotypic sites-in LgDel mouse embryos, an established 22q11DS model. LgDel embryos treated with cyclopamine, an Shh inhibitor, or carrying mutations in Gli3(Xtj), an Shh-signaling effector, have morphogenetic anomalies that are either not seen, or seen at significantly lower frequencies in control or single-mutant embryos. Similarly, RA exposure or genetic loss of RA function via heterozygous mutation of the RA synthetic enzyme Raldh2 induces novel cranial anomalies and enhances cardiovascular phenotypes in LgDel but not other genotypes. These changes are not seen in heterozygous Tbx1 mutant embryos-a 22q11 gene thought to explain much of 22q11DS pathogenesis-in which Shh or RA signaling has been similarly modified. Our results suggest that full dosage of 22q11 genes beyond Tbx1 establish an adaptive range for morphogenetic signaling via Shh and RA. When this adaptive range is constricted by diminished dosage of 22q11 genes, embryos are sensitized to otherwise benign changes in Shh and RA signaling. Such sensitization, in the face of environmental or genetic factors that modify Shh or RA signaling, may explain variability in 22q11DS morphogenetic phenotypes.


Assuntos
Adaptação Biológica , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/metabolismo , Dosagem de Genes , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Tretinoína/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Knockout , Morfogênese/genética , Tubo Neural/embriologia , Tubo Neural/metabolismo , Fenótipo
3.
J Neurosci ; 28(38): 9504-18, 2008 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-18799682

RESUMO

We characterized intrinsic and extrinsic specification of progenitors in the lateral and medial ganglionic eminences (LGE and MGE). We identified seven genes whose expression is enriched or restricted in either the LGE [biregional cell adhesion molecule-related/downregulated by oncogenes binding protein (Boc), Frizzled homolog 8 (Fzd8), Ankrd43 (ankyrin repeat domain-containing protein 43), and Ikzf1 (Ikaros family zinc finger 1)] or MGE [Map3k12 binding inhibitory protein 1 (Mbip); zinc-finger, SWIM domain containing 5 (Zswim5); and Adamts5 [a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 5]]. Boc, Fzd8, Mbip, and Zswim5 are apparently expressed in LGE or MGE progenitors, whereas the remaining three are seen in the postmitotic mantle zone. Relative expression levels are altered and regional distinctions are lost for each gene in LGE or MGE cells propagated as neurospheres, indicating that these newly identified molecular characteristics of LGE or MGE progenitors depend on forebrain signals not available in the neurosphere assay. Analyses of Pax6(Sey/Sey), Shh(-/-), and Gli3(XtJ/XtJ) mutants suggests that LGE and MGE progenitor identity does not rely exclusively on previously established forebrain-intrinsic patterning mechanisms. Among a limited number of additional potential patterning mechanisms, we found that extrinsic signals from the frontonasal mesenchyme are essential for Shh- and Fgf8-dependent regulation of LGE and MGE genes. Thus, extrinsic and intrinsic forebrain patterning mechanisms cooperate to establish LGE and MGE progenitor identity, and presumably their capacities to generate distinct classes of neuronal progeny.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/metabolismo , Células-Tronco/metabolismo , Telencéfalo/embriologia , Telencéfalo/metabolismo , Proteínas ADAM/genética , Proteína ADAMTS5 , Animais , Células Cultivadas , Feminino , Fator 8 de Crescimento de Fibroblasto/genética , Proteínas Hedgehog/genética , Fator de Transcrição Ikaros/genética , Imunoglobulina G/genética , Masculino , Metilglicosídeos/genética , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G/genética , Células-Tronco/citologia , Frações Subcelulares , Telencéfalo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...