Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3907, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400441

RESUMO

YAP is a key transcriptional co-activator of TEADs, it regulates cell growth and is frequently activated in cancer. In Malignant Pleural Mesothelioma (MPM), YAP is activated by loss-of-function mutations in upstream components of the Hippo pathway, while, in Uveal Melanoma (UM), YAP is activated in a Hippo-independent manner. To date, it is unclear if and how the different oncogenic lesions activating YAP impact its oncogenic program, which is particularly relevant for designing selective anti-cancer therapies. Here we show that, despite YAP being essential in both MPM and UM, its interaction with TEAD is unexpectedly dispensable in UM, limiting the applicability of TEAD inhibitors in this cancer type. Systematic functional interrogation of YAP regulatory elements in both cancer types reveals convergent regulation of broad oncogenic drivers in both MPM and UM, but also strikingly selective programs. Our work reveals unanticipated lineage-specific features of the YAP regulatory network that provide important insights to guide the design of tailored therapeutic strategies to inhibit YAP signaling across different cancer types.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Sinalização YAP , Epigenômica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução de Sinais/genética
2.
Genetics ; 222(2)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35977387

RESUMO

Spn1/Iws1 is an essential eukaryotic transcription elongation factor that is conserved from yeast to humans as an integral member of the RNA polymerase II elongation complex. Several studies have shown that Spn1 functions as a histone chaperone to control transcription, RNA splicing, genome stability, and histone modifications. However, the precise role of Spn1 is not understood, and there is little understanding of why it is essential for viability. To address these issues, we have isolated 8 suppressor mutations that bypass the essential requirement for Spn1 in Saccharomyces cerevisiae. Unexpectedly, the suppressors identify several functionally distinct complexes and activities, including the histone chaperone FACT, the histone methyltransferase Set2, the Rpd3S histone deacetylase complex, the histone acetyltransferase Rtt109, the nucleosome remodeler Chd1, and a member of the SAGA coactivator complex, Sgf73. The identification of these distinct groups suggests that there are multiple ways in which Spn1 bypass can occur, including changes in histone acetylation and alterations in other histone chaperones. Thus, Spn1 may function to overcome repressive chromatin by multiple mechanisms during transcription. Our results suggest that bypassing a subset of these functions allows viability in the absence of Spn1.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Elongação da Transcrição , Cromatina , Proteínas de Ligação a DNA/genética , Histona Acetiltransferases/genética , Chaperonas de Histonas/genética , Histona Desacetilases/genética , Histona Metiltransferases/genética , Histonas/genética , Nucleossomos , Fatores de Alongamento de Peptídeos/genética , RNA Polimerase II/genética , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Supressão Genética , Fatores de Transcrição/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética
3.
J Biol Chem ; 297(4): 101205, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34543624

RESUMO

The histone chaperone Spt6 is involved in promoting elongation of RNA polymerase II (RNAPII), maintaining chromatin structure, regulating cotranscriptional histone modifications, and controlling mRNA processing. These diverse functions of Spt6 are partly mediated through its interactions with RNAPII and other factors in the transcription elongation complex. In this study, we used mass spectrometry to characterize the differences in RNAPII-interacting factors between wildtype cells and those depleted for Spt6, leading to the identification of proteins that depend on Spt6 for their interaction with RNAPII. The altered association of some of these factors could be attributed to changes in steady-state protein levels. However, Abd1, the mRNA cap methyltransferase, had decreased association with RNAPII after Spt6 depletion despite unchanged Abd1 protein levels, showing a requirement for Spt6 in mediating the Abd1-RNAPII interaction. Genome-wide studies showed that Spt6 is required for maintaining the level of Abd1 over transcribed regions, as well as the level of Spt5, another protein known to recruit Abd1 to chromatin. Abd1 levels were particularly decreased at the 5' ends of genes after Spt6 depletion, suggesting a greater need for Spt6 in Abd1 recruitment over these regions. Together, our results show that Spt6 is important in regulating the composition of the transcription elongation complex and reveal a previously unknown function for Spt6 in the recruitment of Abd1.


Assuntos
Chaperonas de Histonas/metabolismo , Metiltransferases/metabolismo , Elementos de Resposta , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Cromatina/genética , Cromatina/metabolismo , Chaperonas de Histonas/genética , Espectrometria de Massas , Metiltransferases/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Elongação da Transcrição/genética
4.
Curr Protoc Mol Biol ; 128(1): e103, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31503417

RESUMO

The budding yeast, Saccharomyces cerevisiae, has been widely used for genetic studies of fundamental cellular functions. The isolation and analysis of yeast mutants is a commonly used and powerful technique to identify the genes that are involved in a process of interest. Furthermore, natural genetic variation among wild yeast strains has been studied for analysis of polygenic traits by quantitative trait loci mapping. Whole-genome sequencing, often combined with bulk segregant analysis, is a powerful technique that helps determine the identity of mutations causing a phenotype. Here, we describe protocols for the construction of libraries for S. cerevisiae whole-genome sequencing. We also present a bioinformatic pipeline to determine the genetic variants in a yeast strain using whole-genome sequencing data. This pipeline can also be used for analyzing Schizosaccharomyces pombe mutants. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Generation of haploid spores for bulk segregant analysis Basic Protocol 2: Extraction of genomic DNA from yeast cells Basic Protocol 3: Shearing of genomic DNA for library preparation Basic Protocol 4: Construction and amplification of DNA libraries Support Protocol 1: Annealing oligonucleotides for forming Y-adapters Support Protocol 2: Size selection and cleanup using SPRI beads Basic Protocol 5: Identification of genomic variants from sequencing data.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae/genética , Sequenciamento Completo do Genoma/métodos , Biblioteca Gênica , Dados de Sequência Molecular , Schizosaccharomyces/genética
5.
Nucleic Acids Res ; 47(8): 3888-3903, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30793188

RESUMO

The transcription elongation factor Spt6 and the H3K36 methyltransferase Set2 are both required for H3K36 methylation and transcriptional fidelity in Saccharomyces cerevisiae. However, the nature of the requirement for Spt6 has remained elusive. By selecting for suppressors of a transcriptional defect in an spt6 mutant, we have isolated several highly clustered, dominant SET2 mutations (SET2sup mutations) in a region encoding a proposed autoinhibitory domain. SET2sup mutations suppress the H3K36 methylation defect in the spt6 mutant, as well as in other mutants that impair H3K36 methylation. We also show that SET2sup mutations overcome the requirement for certain Set2 domains for H3K36 methylation. In vivo, SET2sup mutants have elevated levels of H3K36 methylation and the purified Set2sup mutant protein has greater enzymatic activityin vitro. ChIP-seq studies demonstrate that the H3K36 methylation defect in the spt6 mutant, as well as its suppression by a SET2sup mutation, occurs at a step following the recruitment of Set2 to chromatin. Other experiments show that a similar genetic relationship between Spt6 and Set2 exists in Schizosaccharomyces pombe. Taken together, our results suggest a conserved mechanism by which the Set2 autoinhibitory domain requires multiple Set2 interactions to ensure that H3K36 methylation occurs specifically on actively transcribed chromatin.


Assuntos
Regulação Fúngica da Expressão Gênica , Chaperonas de Histonas/genética , Histonas/genética , Metiltransferases/genética , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Fatores de Elongação da Transcrição/genética , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Cromatina/química , Cromatina/metabolismo , Clonagem Molecular , Sequência Conservada , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Metilação , Metiltransferases/metabolismo , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Células Sf9 , Spodoptera , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...