Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comp Immunol Microbiol Infect Dis ; 85: 101800, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35390635

RESUMO

Nipah virus (NiV) is one of the priority pathogens with pandemic potential. Though the spread is far slower than SARS-CoV-2, case fatality is the biggest concern. Fruit bats belonging to genus Pteropus are identified to be the main reservoir of the virus causing sporadic cases and outbreaks in Malaysia, Bangladesh and India. The sudden emergence of Nipah in Kerala, India during 2018-2019 has been astonishing with respect to its introduction in the unaffected areas. With this, active Nipah virus surveillance was conducted among bat populations in Southern part of India viz., Karnataka, Kerala, Tamil Nadu, Telangana, Puducherry and Odisha during January-November 2019. Throat swabs/rectal swabs (n = 573) collected from Pteropus medius and Rousettus leschenaultii bat species and sera of Pteropus medius bats (n = 255) were screened to detect the presence of Nipah viral RNA and anti-Nipah IgG antibodies respectively. Of 255 P. medius bats sera samples, 51 bats (20%) captured from Karnataka, Kerala, Tamil Nadu and Puducherry demonstrated presence of anti-Nipah IgG antibodies. However, the presence of virus couldn't be detected in any of the bat specimens. The recent emergence of Nipah virus in Kerala in September 2021 warrants further surveillance of Nipah virus among bat populations from the affected and remaining states of India.


Assuntos
COVID-19 , Quirópteros , Vírus Nipah , Animais , COVID-19/veterinária , Imunoglobulina G , Índia/epidemiologia , Vírus Nipah/genética , SARS-CoV-2
2.
Front Public Health ; 10: 818545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252095

RESUMO

We report here a Nipah virus (NiV) outbreak in Kozhikode district of Kerala state, India, which had caused fatal encephalitis in a 12-year-old boy and the outbreak response, which led to the successful containment of the disease and the related investigations. Quantitative real-time reverse transcription (RT)-PCR, ELISA-based antibody detection, and whole genome sequencing (WGS) were performed to confirm the NiV infection. Contacts of the index case were traced and isolated based on risk categorization. Bats from the areas near the epicenter of the outbreak were sampled for throat swabs, rectal swabs, and blood samples for NiV screening by real-time RT-PCR and anti-NiV bat immunoglobulin G (IgG) ELISA. A plaque reduction neutralization test was performed for the detection of neutralizing antibodies. Nipah viral RNA could be detected from blood, bronchial wash, endotracheal (ET) secretion, and cerebrospinal fluid (CSF) and anti-NiV immunoglobulin M (IgM) antibodies from the serum sample of the index case. Rapid establishment of an onsite NiV diagnostic facility and contact tracing helped in quick containment of the outbreak. NiV sequences retrieved from the clinical specimen of the index case formed a sub-cluster with the earlier reported Nipah I genotype sequences from India with more than 95% similarity. Anti-NiV IgG positivity could be detected in 21% of Pteropus medius (P. medius) and 37.73% of Rousettus leschenaultia (R. leschenaultia). Neutralizing antibodies against NiV could be detected in P. medius. Stringent surveillance and awareness campaigns need to be implemented in the area to reduce human-bat interactions and minimize spillover events, which can lead to sporadic outbreaks of NiV.


Assuntos
COVID-19 , Vírus Nipah , Criança , Surtos de Doenças , Humanos , Masculino , Vírus Nipah/genética , Pandemias , SARS-CoV-2
3.
Nat Commun ; 12(1): 1386, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654090

RESUMO

The COVID-19 pandemic is a global health crisis that poses a great challenge to the public health system of affected countries. Safe and effective vaccines are needed to overcome this crisis. Here, we develop and assess the protective efficacy and immunogenicity of an inactivated SARS-CoV-2 vaccine in rhesus macaques. Twenty macaques were divided into four groups of five animals each. One group was administered a placebo, while three groups were immunized with three different vaccine candidates of BBV152 at 0 and 14 days. All the macaques were challenged with SARS-CoV-2 fourteen days after the second dose. The protective response was observed with increasing SARS-CoV-2 specific IgG and neutralizing antibody titers from 3rd-week post-immunization. Viral clearance was observed from bronchoalveolar lavage fluid, nasal swab, throat swab and lung tissues at 7 days post-infection in the vaccinated groups. No evidence of pneumonia was observed by histopathological examination in vaccinated groups, unlike the placebo group which exhibited interstitial pneumonia and localization of viral antigen in the alveolar epithelium and macrophages by immunohistochemistry. This vaccine candidate BBV152 has completed Phase I/II (NCT04471519) clinical trials in India and is presently in phase III, data of this study substantiates the immunogenicity and protective efficacy of the vaccine candidates.


Assuntos
Vacinas contra COVID-19/uso terapêutico , SARS-CoV-2/patogenicidade , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Imuno-Histoquímica , Linfócitos/imunologia , Linfócitos/metabolismo , Macaca mulatta , Masculino , Pneumonia/imunologia , Pneumonia/metabolismo
4.
BMC Infect Dis ; 21(1): 162, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563231

RESUMO

BACKGROUND: In June 2019, Nipah virus (NiV) infection was detected in a 21-year-old male (index case) of Ernakulum, Kerala, India. This study was undertaken to determine if NiV was in circulation in Pteropus species (spp) in those areas where the index case had visit history in 1 month. METHODS: Specialized techniques were used to trap the Pteropus medius bats (random sampling) in the vicinity of the index case area. Throat and rectal swabs samples of 141 bats along with visceral organs of 92 bats were collected to detect the presence of NiV by real-time reverse transcriptase-polymerase chain reaction (qRTPCR). Serum samples of 52 bats were tested for anti-NiV Immunoglobulin (Ig) G antibodies by Enzyme-Linked Immunosorbent Assay (ELISA). The complete genome of NiV was sequenced by next-generation sequencing (NGS) from the tissues and swab samples of bats. RESULTS: One rectal swab sample and three bats visceral organs were found positive for the NiV. Interestingly, 20.68% (12/58) of Pteropus were positive for anti-NiV IgG antibodies. NiV sequences of 18,172; 17,200 and 15,100 nucleotide bps could be retrieved from three Pteropus bats. CONCLUSION: A distinct cluster of NiV sequences, with significant net-evolutionary nucleotide divergence, was obtained, suggesting the circulation of new genotype (I-India) in South India. NiV Positivity in Pteropus spp. of bats revealed that NiV is circulating in many districts of Kerala state, and active surveillance of NiV should be immediately set up to know the hotspot area for NiV infection.


Assuntos
Quirópteros/virologia , Infecções por Henipavirus/diagnóstico , Vírus Nipah/genética , Animais , Anticorpos Antivirais/sangue , Surtos de Doenças , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/veterinária , Infecções por Henipavirus/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Imunoglobulina G/sangue , Índia/epidemiologia , Vírus Nipah/classificação , Vírus Nipah/imunologia , Filogenia , RNA Viral/química , RNA Viral/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reto/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...