Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 4292, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619310

RESUMO

Galactic cosmic radiation (GCR) composed of high-energy, heavy particles (HZE) poses potentially serious hazards to long-duration crewed missions in deep space beyond earth's magnetosphere, including planned missions to Mars. Chronic effects of GCR exposure on brain structure and cognitive function are poorly understood, thereby limiting risk reduction and mitigation strategies to protect against sequelae from exposure during and after deep-space travel. Given the selective vulnerability of the hippocampus to neurotoxic insult and the importance of this brain region to learning and memory, we hypothesized that GCR-relevant HZE exposure may induce long-term alterations in adult hippocampal neurogenesis, synaptic plasticity, and hippocampal-dependent learning and memory. To test this hypothesis, we irradiated 3-month-old male and female mice with a single, whole-body dose of 10, 50, or 100 cGy 56Fe ions (600 MeV, 181 keV/µm) at Brookhaven National Laboratory. Our data reveal complex, dynamic, time-dependent effects of HZE exposure on the hippocampus. Two months post exposure, neurogenesis, synaptic plasticity and learning were impaired compared to sham-irradiated, age-matched controls. By six months post-exposure, deficits in spatial learning were absent in irradiated mice, and synaptic potentiation was enhanced. Enhanced performance in spatial learning and facilitation of synaptic plasticity in irradiated mice persisted 12 months post-exposure, concomitant with a dramatic rebound in adult-born neurons. Synaptic plasticity and spatial learning remained enhanced 20 months post-exposure, indicating a life-long influence on plasticity and cognition from a single exposure to HZE in young adulthood. These findings suggest that GCR-exposure can persistently alter brain health and cognitive function during and after long-duration travel in deep space.


Assuntos
Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Radiação Cósmica/efeitos adversos , Astronautas , Biomarcadores , Encéfalo/fisiopatologia , Giro Denteado/metabolismo , Giro Denteado/fisiopatologia , Giro Denteado/efeitos da radiação , Exposição Ambiental/efeitos adversos , Feminino , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Hipocampo/efeitos da radiação , Humanos , Masculino , Neurogênese/efeitos da radiação , Exposição à Radiação/efeitos adversos , Voo Espacial , Aprendizagem Espacial/efeitos da radiação , Fatores de Tempo
2.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093363

RESUMO

SNAP-25 is essential to activity-dependent vesicle fusion and neurotransmitter release in the nervous system. During early development and adulthood, SNAP-25 appears to have differential influences on short- and long-term synaptic plasticity. The involvement of SNAP-25 in these processes may be different at hippocampal and neocortical synapses because of the presence of two different splice variants, which are developmentally regulated. We show here that the isoform SNAP-25a, which is expressed first developmentally in rodent brain, contributes to developmental regulation of the expression of both long-term depression (LTD) and long-term potentiation (LTP) at Schaffer collateral-CA1 synapses in the hippocampus. In one month old mice lacking the developmentally later expressed isoform SNAP-25b, Schaffer collateral-CA1 synapses showed faster release kinetics, decreased LTP and enhanced LTD. By four months of age, SNAP-25b-deficient mice appeared to have compensated for the lack of the adult SNAP-25b isoform, now exhibiting larger LTP and no differences in LTD compared to wild type mice. Interestingly, learning a hippocampus-dependent task reversed the reductions in LTP, but not LTD, seen at one month of age. In four month old adult mice, learning prevented the compensatory up-regulation of LTD that we observed prior to training. These findings support the hypothesis that SNAP-25b promotes stronger LTP and weakens LTD at Schaffer collateral-CA1 synapses in young mice, and suggest that compensatory mechanisms can reverse alterations in synaptic plasticity associated with a lack of SNAP-25b, once mice reach adulthood.


Assuntos
Região CA1 Hipocampal/metabolismo , Aprendizagem , Potenciação de Longa Duração , Sinapses/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Região CA1 Hipocampal/citologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sinapses/genética , Proteína 25 Associada a Sinaptossoma/genética
3.
Sci Rep ; 9(1): 6403, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31024034

RESUMO

SNAP-25 exists as two developmentally regulated alternatively spliced isoforms, SNAP-25a and SNAP-25b. We explored the function of SNAP-25a and SNAP-25b at Schaffer collateral-CA1 synapses in hippocampus using 4-week-old wild-type (WT) and SNAP-25b-deficient (MT) mice. Characterizing the protein expression of individual SNAP-25 isoforms revealed that WT females had higher levels of SNAP-25a than WT males, suggesting a sex-dependent delay of the alternative splicing switch from SNAP-25a to SNAP-25b. MT mice expressed normal levels of total SNAP-25, Syntaxin 1A and SNAP-47 in the hippocampus, but females expressed lower levels of VAMP2. Electrophysiological recordings in in vitro hippocampal slices revealed significantly reduced magnitude of LTP in MT mice. We also found reduction in paired-pulse facilitation after induction of LTP in WT males, but not in WT females, possibly related to the difference in SNAP-25a/SNAP-25b ratios, suggesting that the splicing switch may play a sex-specific role in LTP-associated increases in presynaptic release probability. Basal synaptic transmission measured in input-output relations revealed that the ability to discriminate between the intensity of presynaptic stimuli was affected in SNAP-25b-deficient mice. Learning in a behavioural paradigm of active-avoidance was impaired in MT mice, strengthening the conclusion that SNAP-25b is important for cognitive performance by altering activity-dependent synaptic plasticity.


Assuntos
Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Ansiedade/fisiopatologia , Aprendizagem da Esquiva , Comportamento Animal , Feminino , Hipocampo/metabolismo , Locomoção , Potenciação de Longa Duração , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/metabolismo , Transmissão Sináptica , Fatores de Tempo
4.
Brain ; 141(2): 422-458, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29360998

RESUMO

The mechanisms underpinning concussion, traumatic brain injury, and chronic traumatic encephalopathy, and the relationships between these disorders, are poorly understood. We examined post-mortem brains from teenage athletes in the acute-subacute period after mild closed-head impact injury and found astrocytosis, myelinated axonopathy, microvascular injury, perivascular neuroinflammation, and phosphorylated tau protein pathology. To investigate causal mechanisms, we developed a mouse model of lateral closed-head impact injury that uses momentum transfer to induce traumatic head acceleration. Unanaesthetized mice subjected to unilateral impact exhibited abrupt onset, transient course, and rapid resolution of a concussion-like syndrome characterized by altered arousal, contralateral hemiparesis, truncal ataxia, locomotor and balance impairments, and neurobehavioural deficits. Experimental impact injury was associated with axonopathy, blood-brain barrier disruption, astrocytosis, microgliosis (with activation of triggering receptor expressed on myeloid cells, TREM2), monocyte infiltration, and phosphorylated tauopathy in cerebral cortex ipsilateral and subjacent to impact. Phosphorylated tauopathy was detected in ipsilateral axons by 24 h, bilateral axons and soma by 2 weeks, and distant cortex bilaterally at 5.5 months post-injury. Impact pathologies co-localized with serum albumin extravasation in the brain that was diagnostically detectable in living mice by dynamic contrast-enhanced MRI. These pathologies were also accompanied by early, persistent, and bilateral impairment in axonal conduction velocity in the hippocampus and defective long-term potentiation of synaptic neurotransmission in the medial prefrontal cortex, brain regions distant from acute brain injury. Surprisingly, acute neurobehavioural deficits at the time of injury did not correlate with blood-brain barrier disruption, microgliosis, neuroinflammation, phosphorylated tauopathy, or electrophysiological dysfunction. Furthermore, concussion-like deficits were observed after impact injury, but not after blast exposure under experimental conditions matched for head kinematics. Computational modelling showed that impact injury generated focal point loading on the head and seven-fold greater peak shear stress in the brain compared to blast exposure. Moreover, intracerebral shear stress peaked before onset of gross head motion. By comparison, blast induced distributed force loading on the head and diffuse, lower magnitude shear stress in the brain. We conclude that force loading mechanics at the time of injury shape acute neurobehavioural responses, structural brain damage, and neuropathological sequelae triggered by neurotrauma. These results indicate that closed-head impact injuries, independent of concussive signs, can induce traumatic brain injury as well as early pathologies and functional sequelae associated with chronic traumatic encephalopathy. These results also shed light on the origins of concussion and relationship to traumatic brain injury and its aftermath.awx350media15713427811001.


Assuntos
Traumatismos em Atletas/complicações , Concussão Encefálica/etiologia , Traumatismos Craniocerebrais/complicações , Traumatismos Craniocerebrais/etiologia , Tauopatias/etiologia , Lesões do Sistema Vascular/etiologia , Potenciais de Ação/fisiologia , Adolescente , Animais , Atletas , Encéfalo/patologia , Proteínas de Ligação ao Cálcio , Estudos de Coortes , Simulação por Computador , Traumatismos Craniocerebrais/diagnóstico por imagem , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/fisiologia , Hipocampo/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Modelos Neurológicos , Córtex Pré-Frontal/fisiopatologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...