Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Inorg Chem ; 62(36): 14704-14714, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37642404

RESUMO

Ligand electronic effects play an important role in catalysis, where small changes to ligand structure can bring about large changes in catalytic activity. Therefore, accurate experimental quantification of ligand electronic properties plays a crucial role in understanding and tuning chemical reactivity. In this work, we used cryogenic ion vibrational predissociation (CIVP) spectroscopy to experimentally quantify electronic effects in terpyridine ligands, as simple model systems, by measuring CIVP spectra of their copper complexes tagged by N2 molecules. We used the N2 stretching vibration as a reporter chromophore to probe electronic effects of the investigated ligands and employed quantum chemical calculations to better understand how different substituents influence the vibrational frequencies of the stretching vibration of the chromophore. Our data show that the electronic character, as well as position and number of substituents, can affect the N≡N vibrational frequency, and that the N≡N bond serves as a sensitive probe for electronic and steric effects.

2.
J Am Chem Soc ; 144(20): 9007-9022, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35549249

RESUMO

We report an evaluation of the importance of London dispersion in moderately large (up to 36 heavy atoms) organic molecules by means of a molecular torsion balance whose conformations "weigh" one interaction against another in the absence of solvents. The experimental study, with gas-phase cryogenic ion vibrational predissociation (CIVP) spectroscopy, solid-state Fourier transfer infrared (FT-IR), and single-crystal X-ray crystallography, is accompanied by density functional theory calculations, including an extensive search and analysis of accessible conformations. We begin with the unsubstituted molecular torsion balance, and then step up the complexity systematically by adding alkyl groups incrementally as dispersion energy donors (DEDs) to achieve a degree of chemical complexity comparable to what is typically found in transition states for many regio- and stereoselective reactions in organic and organometallic chemistry. We find clear evidence for the small attractive contribution by DEDs, as had been reported in other studies, but we also find that small individual contributions by London dispersion, when they operate in opposition to other weak noncovalent interactions, produce composite effects on the structure that are difficult to predict intuitively, or by modern quantum chemical calculations. The experimentally observed structures, together with a reasonable value for a reference cation-π interaction, indicate that the pairwise interaction between two tert-butyl groups, in the best case, is modest. Moreover, the visualization of the conformational space, and comparison to spectroscopic indicators of the structure, as one steps up the complexity of the manifold of noncovalent interactions, makes clear that in silico predictive ability for the structure of moderately large, flexible, organic molecules falters sooner than one might have expected.


Assuntos
Teoria Quântica , Cátions , Londres , Conformação Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Rev Sci Instrum ; 92(8): 083002, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470415

RESUMO

Rapidly developing mid-infrared quantum cascade laser (QCL) technology gives easy access to broadly tunable mid-IR laser radiation at a modest cost. Despite several applications of QCL in the industry, its usage for spectroscopic investigation of synthetically relevant organic compounds has been limited. Here, we report the application of an external cavity, continuous wave, mid-IR QCL to cryogenic ion vibrational predissociation spectroscopy to analyze a set of large organic molecules, organometallic complexes, and isotopically labeled compounds. The obtained spectra of test molecules are characterized by a high signal-to-noise ratio and low full width at half-maximum-values, allowing the assignment of two compounds with just a few wavenumber difference. Data generated by cw-QCL and spectra produced by another standard Nd:YAG difference-frequency generation system are compared and discussed.

4.
J Phys Chem A ; 124(42): 8692-8707, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-32955888

RESUMO

Accurate bond dissociation energies for large molecules are difficult to obtain by either experimental or computational methods. The former methods are hampered by a range of physical and practical limitations in gas-phase measurement techniques, while the latter require incorporation of multiple approximations whose impact on accuracy may not always be clear. When internal benchmarks are not available, one hopes that experiment and theory can mutually support each other. A recent report found, however, a large discrepancy between gas-phase bond dissociation energies, measured mass spectrometrically, and the corresponding quantities computed using density functional theory (DFT)-D3 and DLPNO-CCSD(T) methods. With the widespread application of these computational methods to large molecular systems, the discrepancy needs to be resolved. We report a series of experimental studies that validate the mass spectrometric methods from small to large ions and find that bond dissociation energies extracted from threshold collision-induced dissociation experiments on large ions do indeed behave correctly. The implications for the computational studies are discussed.

5.
J Phys Chem A ; 124(41): 8519-8528, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32954731

RESUMO

In cryogenic ion vibrational predissociation (CIVP) spectroscopy, the influence of the tag on the spectrum is an important consideration. Whereas for small ions several studies have shown that the tag effects can be significant, these effects are less understood for large ions or for large numbers of tags. Nevertheless, it is commonly assumed that if the investigated molecular ion is large enough, the perturbations arising from the tag are small and can therefore be neglected in the interpretation. In addition, it is generally assumed that the more weakly bound the tag is, the less it perturbs the CIVP spectrum. Under these assumptions, CIVP spectra are claimed to be effectively IR absorption spectra of the free molecular ion. Having observed unexpected splittings in otherwise unproblematic CIVP spectra of some tagged ions, we report Born-Oppenheimer molecular dynamics (BOMD) simulations that strongly indicate that mobility among the more weakly bound tags leads to the surprising splittings. We compared the behavior of two tags commonly used in CIVP spectroscopy (H2 and N2) with a large pyridinium cation. Our experimental results surprisingly show that under the appropriate circumstances, the more weakly bound tag can perturb the CIVP spectra more than the more strongly bound tag by not just shifting but also splitting the observed bands. The more weakly bound tag had significant residence times at several spectroscopically distinct sites on the molecular ion. This indicates that the weakly bound tag is likely to sample several binding sites in the experiment, some of which involve interaction with the reporter chromophore.

6.
J Chem Phys ; 151(23): 234304, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864275

RESUMO

We report a gas-phase molecular torsion balance that uses a conformational equilibrium to "weigh" London dispersion against a competing cation-π interaction, for which the readout is the shift in an N-H stretching frequency measured by cryogenic ion vibrational predissociation (CIVP) spectroscopy of electrosprayed pyridinium cations in a Fourier-transform ion cyclotron resonance trap. While frequency calculations with DFT, within the harmonic approximation, assist in the interpretation of the spectra, the observed complex spectrum most likely comes from a Fermi resonance of the N-H stretch with otherwise "dark" overtones of in-plane C-H wagging modes, as argued on the basis of comparison of the spectrum to those for a range of related cations with systematically varied substitution. An equilibrium in favor of the asymmetric conformer would suggest that the dispersion-corrected DFT calculations tested in this work appear to overestimate significantly the stability of the compact conformations favored by London dispersion in the gas phase, which would then pertain to the use of dispersion energy donors in the design of stereoselective reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...