Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 24(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35626522

RESUMO

Fifth generation mobile communication systems (5G) have to accommodate both Ultra-Reliable Low-Latency Communication (URLLC) and enhanced Mobile Broadband (eMBB) services. While eMBB applications support high data rates, URLLC services aim at guaranteeing low-latencies and high-reliabilities. eMBB and URLLC services are scheduled on the same frequency band, where the different latency requirements of the communications render their coexistence challenging. In this survey, we review, from an information theoretic perspective, coding schemes that simultaneously accommodate URLLC and eMBB transmissions and show that they outperform traditional scheduling approaches. Various communication scenarios are considered, including point-to-point channels, broadcast channels, interference networks, cellular models, and cloud radio access networks (C-RANs). The main focus is on the set of rate pairs that can simultaneously be achieved for URLLC and eMBB messages, which captures well the tension between the two types of communications. We also discuss finite-blocklength results where the measure of interest is the set of error probability pairs that can simultaneously be achieved in the two communication regimes.

2.
Sensors (Basel) ; 21(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494302

RESUMO

Superposition coding (SC) has been known to be capacity-achieving for the Gaussian memoryless broadcast channel for more than 30 years. However, SC regained interest in the context of non-orthogonal multiple access (NOMA) in 5G. From an information theory point of view, SC is capacity-achieving in the broadcast Gaussian channel, even when the number of users tends to infinity. However, using SC has two drawbacks: the decoder complexity increases drastically with the number of simultaneous receivers, and the latency is unbounded since SC is optimal only in the asymptotic regime. To evaluate these effects quantitatively in terms of fundamental limits, we introduce a finite time transmission constraint imposed at the base station, and we evaluate fundamental trade-offs between the maximal number of superposed users, the coding block-length and the block error probability. The energy efficiency loss due to these constraints is evaluated analytically and by simulation. Orthogonal sharing appears to outperform SC for hard delay constraints (equivalent to short block-length) and in low spectral efficiency regime (below one bit per channel use). These results are obtained by the association of stochastic geometry and finite block-length information theory.

3.
Entropy (Basel) ; 22(6)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33286462

RESUMO

This paper introduces an upper bound on the absolute difference between: ( a ) the cumulative distribution function (CDF) of the sum of a finite number of independent and identically distributed random variables with finite absolute third moment; and ( b ) a saddlepoint approximation of such CDF. This upper bound, which is particularly precise in the regime of large deviations, is used to study the dependence testing (DT) bound and the meta converse (MC) bound on the decoding error probability (DEP) in point-to-point memoryless channels. Often, these bounds cannot be analytically calculated and thus lower and upper bounds become particularly useful. Within this context, the main results include, respectively, new upper and lower bounds on the DT and MC bounds. A numerical experimentation of these bounds is presented in the case of the binary symmetric channel, the additive white Gaussian noise channel, and the additive symmetric α -stable noise channel.

4.
Med Image Anal ; 7(3): 353-67, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12946474

RESUMO

In echocardiography, the radio-frequency (RF) image is a rich source of information about the investigated tissues. Nevertheless, very few works are dedicated to boundary detection based on the RF image, as opposed to envelope image. In this paper, we investigate the feasibility and limitations of boundary detection in echocardiographic images based on the RF signal. We introduce two types of RF-derived parameters: spectral autoregressive parameters and velocity-based parameters, and we propose a discontinuity adaptive framework to perform the detection task. In classical echographic cardiac acquisitions, we show that it is possible to use the spectral contents for boundary detection, and that improvement can be expected with respect to traditional methods. Using the system approach, we study on simulations how the spectral contents can be used for boundary detection. We subsequently perform boundary detection in high frame rate simulated and in vivo cardiac sequences using the variance of velocity, obtaining very promising results. Our work opens the perspective of a RF-based framework for ultrasound cardiac image segmentation and tracking.


Assuntos
Algoritmos , Ecocardiografia/métodos , Coração/fisiologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Movimento/fisiologia , Reconhecimento Automatizado de Padrão , Ondas de Rádio , Estudos de Viabilidade , Ventrículos do Coração/diagnóstico por imagem , Humanos , Função Ventricular
5.
Artigo em Inglês | MEDLINE | ID: mdl-12546150

RESUMO

Spectral estimation is a major component in studies aiming at characterizing biological tissues through the analysis of backscattered radio frequency (RF) ultrasonic signals and images. However, conventional spectral estimation techniques yield a well-known trade-off between spatial resolution and variance. The backscattered signals are stochastic by nature, so short-term local analysis results in a high variance of the estimates, which cannot efficiently be reduced through conventional spatial averaging. We address this issue by describing a spectral estimation technique that reduces the variance of the estimates (by smoothing the local estimates in spectrally homogeneous regions) while preserving spectral discontinuities (i.e., the smoothing is not performed across regions with different spectral contents). The proposed approach is set in a Bayesian framework and is based on local autoregressive (AR) estimation, constrained by smoothness priors. These smoothness priors are introduced through a Markov random field in which the associated potential functions are nonquadratic, allowing thereby to preserve discontinuity. The method is validated on simulated RF images and tested on echocardiographic images acquired in vivo. The results are compared to the estimates provided by the conventional Burg technique. These results clearly demonstrate the ability of the proposed approach to improve spectral estimation in terms of variance reduction and discontinuity detection.


Assuntos
Algoritmos , Ecocardiografia/métodos , Aumento da Imagem/métodos , Modelos Estatísticos , Processamento de Sinais Assistido por Computador , Animais , Teorema de Bayes , Simulação por Computador , Cães , Modelos Biológicos , Controle de Qualidade , Ondas de Rádio , Análise de Regressão , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade , Processos Estocásticos , Ultrassonografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...