Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5000, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591992

RESUMO

Single Pulse All Optical Switching represents the ability to reverse the magnetization of a nanostructure using a femtosecond single laser pulse without any applied field. Since the first switching experiments carried out on GdFeCo ferrimagnets, this phenomena has been only recently extended to a few other materials, MnRuGa alloys and Tb/Co multilayers with a very specific range of thickness and composition. Here, we demonstrate that single pulse switching can be obtained for a large range of rare earth-transition metal multilayers, making this phenomenon much more general. Surprisingly, the threshold fluence for switching is observed to be independent of the laser pulse duration. Moreover, at high laser intensities, concentric ring domain structures are induced. These striking features contrast to those observed in Gd based materials pointing towards a different reversal mechanism. Concomitant with the demonstration of an in-plane magnetization reorientation, a precessional reversal mechanism explains all the observed features.

2.
Phys Rev Lett ; 117(5): 057201, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27517790

RESUMO

We report a comparative study of magnetic field driven domain wall motion in thin films made of different magnetic materials for a wide range of field and temperature. The full thermally activated creep motion, observed below the depinning threshold, is shown to be described by a unique universal energy barrier function. Our findings should be relevant for other systems whose dynamics can be modeled by elastic interfaces moving on disordered energy landscapes.

3.
Phys Rev Lett ; 113(2): 027205, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062227

RESUMO

Magnetic-field-driven domain wall motion in an ultrathin Pt/Co(0.45 nm)/Pt ferromagnetic film with perpendicular anisotropy is studied over a wide temperature range. Three different pinning dependent dynamical regimes are clearly identified: the creep, the thermally assisted flux flow, and the depinning, as well as their corresponding crossovers. The wall elastic energy and microscopic parameters characterizing the pinning are determined. Both the extracted thermal rounding exponent at the depinning transition, ψ=0.15, and the Larkin length crossover exponent, ϕ=0.24, fit well with the numerical predictions.

4.
Phys Rev Lett ; 112(2): 026601, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24484033

RESUMO

We show experimental evidence of magnetization switching in a single (Ga,Mn)(As,P) semiconducting ferromagnetic layer, attributed to a strong reduction of the magnetization and the anisotropy due to current injection. The nucleation of magnetization reversal is found to occur even in the absence of a magnetic field and to be both anisotropic and stochastic. Our findings highlight a new mechanism of magnetization manipulation based on spin accumulation in a semiconductor material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...