Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cancer ; 6(12): 1295-305, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26640590

RESUMO

BACKGROUND: MicroRNA (miRNA) have been shown to regulate gene expression in many cancers. MiR-182 has recently been found to be prognostic for patients treated with radical prostatectomy for prostate cancer. We sought to assess miR-182 as a prognostic marker and understand its role in prostate cancer progression and metastasis. METHODS: We analysed miR-182 expression among 147 men treated for prostate cancer using biochemical recurrence and metastasis as the endpoints. We examined miR-182 expression in prostate cancer cells and created cell lines that overexpressed miR-182 for functional assays. Finally, we examined pathways through which miR-182 may function using prediction algorithms and confirmed by Western blotting and knock-down assays. RESULTS: We found that miR-182 was not associated with biochemical recurrence (p=0.1111) or metastasis (p=0.9268) following radical prostatectomy. However, in mechanistic assays, we found that miR-182 expression was higher among aggressive prostate cancer cells and that ectopic miR-182 expression resulted in increased proliferation, migration and invasion in vitro. We identified FOXO1 as regulated by miR-182 in prostate cancer cells, confirmed that ectopic miR-182 expression resulted in diminished FOXO1 levels, and showed that miR-182 inhibition results in increased FOXO1 levels. Expression of FOXO1 (p=0.0014) in tumors from patients who developed biochemical recurrence compared to tumors from patients who were recurrence-free five years after their radical prostatectomy. CONCLUSIONS: Our findings suggest that miR-182 may act to increase prostate cancer proliferation, migration and invasion through suppression of FOXO1. This may be valuable in the development of further therapeutic interventions.

2.
J Vis Exp ; (63): e3874, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22643910

RESUMO

MicroRNAs (miRNAs) are single-stranded, 18-24 nucleotide long, non-coding RNA molecules. They are involved in virtually every cellular process including development, apoptosis, and cell cycle regulation. MiRNAs are estimated to regulate the expression of 30% to 90% of human genes by binding to their target messenger RNAs (mRNAs). Widespread dysregulation of miRNAs has been reported in various diseases and cancer subtypes. Due to their prevalence and unique structure, these small molecules are likely to be the next generation of biomarkers, therapeutic agents and/or targets. Methods used to investigate miRNA expression include SYBR green I dye-based as well as Taqman-probe based qPCR. If miRNAs are to be effectively used in the clinical setting, it is imperative that their detection in fresh and/or archived clinical samples be accurate, reproducible, and specific. qPCR has been widely used for validating expression of miRNAs in whole genome analyses such as microarray studies. The samples used in this protocol were from patients who underwent radical prostatectomy for clinically localized prostate cancer; however other tissues and cell lines can be substituted in. Prostate specimens were snap-frozen in liquid nitrogen after resection. Clinical variables and follow-up information for each patient were collected for subsequent analysis. Quantification of miRNA levels in prostate tumor samples. The main steps in qPCR analysis of tumors are: Total RNA extraction, cDNA synthesis, and detection of qPCR products using miRNA-specific primers. Total RNA, which includes mRNA, miRNA, and other small RNAs were extracted from specimens using TRIzol reagent. Qiagen's miScript System was used to synthesize cDNA and perform qPCR (Figure 1). Endogenous miRNAs are not polyadenylated, therefore during the reverse transcription process, a poly(A) polymerase polyadenylates the miRNA. The miRNA is used as a template to synthesize cDNA using oligo-dT and Reverse Transcriptase. A universal tag sequence on the 5' end of oligo-dT primers facilitates the amplification of cDNA in the PCR step. PCR product amplification is detected by the level of fluorescence emitted by SYBR Green, a dye which intercalates into double stranded DNA. Specific miRNA primers, along with a Universal Primer that binds to the universal tag sequence will amplify specific miRNA sequences. The miScript Primer Assays are available for over a thousand human-specific miRNAs, and hundreds of murine-specific miRNAs. Relative quantification method was used here to quantify the expression of miRNAs. To correct for variability amongst different samples, expression levels of a target miRNA is normalized to the expression levels of a reference gene. The choice of a gene on which to normalize the expression of targets is critical in relative quantification method of analysis. Examples of reference genes typically used in this capacity are the small RNAs RNU6B, RNU44, and RNU48 as they are considered to be stably expressed across most samples. In this protocol, RNU6B is used as the reference gene.


Assuntos
MicroRNAs/análise , Neoplasias da Próstata/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Humanos , Masculino , MicroRNAs/genética , Neoplasias da Próstata/química
3.
Anticancer Res ; 31(2): 403-10, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21378318

RESUMO

Expression profiling studies using microarrays and other methods have shown that microRNAs (miRNAs) are dysregulated in a wide variety of human cancers. The up-regulation of miR-221 has been reported in carcinomas of the pancreas, breast, and papillary thyroid, as well as in glioblastoma and chronic lymphocytic leukaemia. In prostate cancer, however, down-regulation of miR-221 has been repeatedly confirmed in miRNA expression studies. Also unique to prostate cancer, and found in more than 50% of patients, is the aberrant expression of a known oncogene, the TMPRSS2:ERG fusion. To date, there has been no published study describing miRNA associations in prostate tumours that overexpress the ERG oncogene from the TMPRSS2:ERG fusion transcript. Herein we report that in a large and diverse cohort of prostate carcinoma samples, miR-221 is down-regulated in patients with tumours bearing TMPRSS2:ERG fusion transcripts, thus providing a link between miRNA and gene fusion expression.


Assuntos
MicroRNAs/genética , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Adulto , Idoso , Estudos de Coortes , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Humanos , Masculino , MicroRNAs/biossíntese , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Proteínas de Fusão Oncogênica/biossíntese , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...