Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 6(22): 3684-3691, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254831

RESUMO

The direct cell control by surface topographic patterns in the micrometer and nanometer range has been proven to be important for the maintenance of tissue structures. This study presents the application of direct laser writing to fabricate micro-gratings on the biodegradable material 1,3-diamino-2-hydroxypropane-co-polyol sebacate (APS). The 193 nm excimer laser is applied to form microgrooves with widths of 2 to 10 µm and depths of 400 to 2884 nm. Two kinds of cells, fibroblasts of the rabbit synoviocyte cell line (HIG-82) and endothelial cells of human umbilical vein endothelial cells (HUVECs), were cultured on the flat and patterned APS to evaluate the biocompatibility of APS as well as the influence of contact guidance for cellular behaviours, respectively. The results show that both HIG-82 and HUVECs grow actively on APS scaffolds with directional growth, which was observed through cell morphology and proliferation rate, indicating their applicability in tissue regeneration. HIG-82 was observed to exhibit directional growth with the highest cell spreading area and density on the scaffolds with 7 µm width and 1350-1500 nm depth of gratings. Meanwhile, high cell spreading area and cell density of HUVECs were observed on laser ablated APS with 5 µm gratings and at depths greater than 1485 nm. The proposed microgrooves on APS could significantly enhance the cell growth, adhesion and even promote selective cell proliferation, which poses potential application for further tissue engineering studies.

2.
Polymers (Basel) ; 9(7)2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-30970919

RESUMO

Laser patterning on polymeric materials is considered a green and rapid manufacturing process with low material selection barrier and high adjustability. Unlike microelectromechanical systems (MEMS), it is a highly flexible processing method, especially useful for prototyping. This study focuses on the development of polymer surface modification method using a 193 nm excimer laser system for the design and fabrication of a microfluidic system similar to that of natural vasculatures. Besides from poly(dimethyl siloxane) (PDMS), laser ablation on biodegradable polymeric material, poly(glycerol sebacate) (PGS) and poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate) (APS) are investigated. Parameters of laser ablation and fabrication techniques to create microchannels are discussed. The results show that nano/micro-sized fractures and cracks are generally observed across PDMS surface after laser ablation, but not on PGS and APS surfaces. The widths of channels are more precise on PGS and APS than those on PDMS. Laser beam size and channel depth are high correlation with a linear relationship. Repeated laser ablations on the same position of scaffolds reveal that the ablation efficiencies and edge quality on PGS and APS are higher than on PDMS, suggesting the high applicability of direct laser machining to PGS and APS. To ensure stable ablation efficiency, effects of defocus distance into polymer surfaces toward laser ablation stability are investigated. The depth of channel is related to the ratio of firing frequency and ablation progression speed. The hydrodynamic simulation of channels suggests that natural blood vessel is similar to the laser patterned U-shaped channels, and the resulting micro-patterns are highly applicable in the field of micro-fabrication and biomedical engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...