Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430155

RESUMO

Stem rust (SR) and leaf rust (LR) are currently the two most important rust diseases of cultivated rye in Central Europe and resistant cultivars promise to prevent yield losses caused by those pathogens. To secure long-lasting resistance, ideally pyramided monogenic resistances and race-nonspecific resistances are applied. To find respective genes, we screened six breeding populations and one testcross population for resistance to artificially inoculated SR and naturally occurring LR in multi-environmental field trials. Five populations were genotyped with a 10K SNP marker chip and one with DArTseqTM. In total, ten SR-QTLs were found that caused a reduction of 5-17 percentage points in stem coverage with urediniospores. Four QTLs thereof were mapped to positions of already known SR QTLs. An additional gene at the distal end of chromosome 2R, Pgs3.1, that caused a reduction of 40 percentage points SR infection, was validated. One SR-QTL on chromosome 3R, QTL-SR4, was found in three populations linked with the same marker. Further QTLs at similar positions, but from different populations, were also found on chromosomes 1R, 4R, and 6R. For SR, additionally seedling tests were used to separate between adult-plant and all-stage resistances and a statistical method accounting for the ordinal-scaled seedling test data was used to map seedling resistances. However, only Pgs3.1 could be detected based on seedling test data, even though genetic variance was observed in another population, too. For LR, in three of the populations, two new large-effect loci (Pr7 and Pr8) on chromosomes 1R and 2R were mapped that caused 34 and 21 percentage points reduction in leaf area covered with urediniospores and one new QTL on chromosome 1R causing 9 percentage points reduction.


Assuntos
Basidiomycota , Resistência à Doença , Resistência à Doença/genética , Secale/genética , Doenças das Plantas/genética , Triticum/genética , Melhoramento Vegetal , Basidiomycota/genética , Plântula/genética
2.
Theor Appl Genet ; 135(8): 2891-2905, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35831462

RESUMO

KEY MESSAGE: We propose a simulation approach to compute response to genomic selection on a multi-environment framework to provide breeders the number of entries that need to be selected from the population to have a defined probability of selecting the truly best entry from the population and the probability of obtaining the truly best entries when some top-ranked entries are selected. The goal of any plant breeding program is to maximize genetic gain for traits of interest. In classical quantitative genetics, the genetic gain can be obtained from what is known as "Breeder's equation". In the past, only phenotypic data were used to compute the genetic gain. The advent of genomic prediction (GP) has opened the door to the utilization of dense markers for estimating genomic breeding values or GBV. The salient feature of GP is the possibility to carry out genomic selection with the assistance of the kinship matrix, hence improving the prediction accuracy and accelerating the breeding cycle. However, estimates of GBV as such do not provide the full information on the number of entries to be selected as in the classical response to selection. In this paper, we use simulation, based on a fitted mixed model for GP in a multi-environmental framework, to answer two typical questions of a plant breeder: (1) How many entries need to be selected to have a defined probability of selecting the truly best entry from the population; (2) what is the probability of obtaining the truly best entries when some top-ranked entries are selected.


Assuntos
Modelos Genéticos , Melhoramento Vegetal , Genoma , Genômica , Fenótipo , Plantas/genética , Seleção Genética
3.
Theor Appl Genet ; 134(5): 1409-1422, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33630103

RESUMO

KEY MESSAGE: Hyperspectral data is a promising complement to genomic data to predict biomass under scenarios of low genetic relatedness. Sufficient environmental connectivity between data used for model training and validation is required. The demand for sustainable sources of biomass is increasing worldwide. The early prediction of biomass via indirect selection of dry matter yield (DMY) based on hyperspectral and/or genomic prediction is crucial to affordably untap the potential of winter rye (Secale cereale L.) as a dual-purpose crop. However, this estimation involves multiple genetic backgrounds and genetic relatedness is a crucial factor in genomic selection (GS). To assess the prospect of prediction using reflectance data as a suitable complement to GS for biomass breeding, the influence of trait heritability ([Formula: see text]) and genetic relatedness were compared. Models were based on genomic (GBLUP) and hyperspectral reflectance-derived (HBLUP) relationship matrices to predict DMY and other biomass-related traits such as dry matter content (DMC) and fresh matter yield (FMY). For this, 270 elite rye lines from nine interconnected bi-parental families were genotyped using a 10 k-SNP array and phenotyped as testcrosses at four locations in two years (eight environments). From 400 discrete narrow bands (410 nm-993 nm) collected by an uncrewed aerial vehicle (UAV) on two dates in each environment, 32 hyperspectral bands previously selected by Lasso were incorporated into a prediction model. HBLUP showed higher prediction abilities (0.41 - 0.61) than GBLUP (0.14 - 0.28) under a decreased genetic relationship, especially for mid-heritable traits (FMY and DMY), suggesting that HBLUP is much less affected by relatedness and [Formula: see text]. However, the predictive power of both models was largely affected by environmental variances. Prediction abilities for DMY were further enhanced (up to 20%) by integrating both matrices and plant height into a bivariate model. Thus, data derived from high-throughput phenotyping emerges as a suitable strategy to efficiently leverage selection gains in biomass rye breeding; however, sufficient environmental connectivity is needed.


Assuntos
Biomassa , Genômica/métodos , Imageamento Hiperespectral/métodos , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Secale/fisiologia , Seleção Genética , Interação Gene-Ambiente , Genética Populacional , Genoma de Planta , Fenótipo , Secale/genética
4.
Toxins (Basel) ; 12(11)2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114663

RESUMO

Ergot caused by Claviceps purpurea is a problem for food and feed security in rye due to the occurrence of toxic ergot alkaloids (EAs). For grain elevators and breeders, a quick, easy-to-handle, and cheap screening assay would have a high economic impact. The study was performed to reveal (1) the covariation of ergot severity (= percentage of sclerotia in harvested grain) and the content of 12 EAs determined by high performance liquid chromatography (HPLC) and (2) the covariation between these traits and results of one commercial enzyme linked immunosorbent assays (ELISA). In total, 372 winter rye samples consisting of a diverse set of genotypes, locations from Germany, Austria, and Poland over two years, and three isolates were analyzed. Ergocornine and α-ergocryptine were detected as major EAs. Ergocristinine occurred as a minor component. Claviceps isolates from different countries showed a similar EA spectrum, but different quantities of individual EAs. A moderate, positive covariation between ergot severity and EA content determined by HPLC was observed across two years (r = 0.53, p < 0.01), but large deviation from the regression was detected. ELISA values did neither correlate with the HPLC results nor with ergot severity. In conclusion, a reliable prediction of the EA content based on ergot severity is, at present, not possible.


Assuntos
Claviceps/isolamento & purificação , Grão Comestível/microbiologia , Alcaloides de Claviceps/análise , Contaminação de Alimentos/análise , Secale/microbiologia , Áustria , Cromatografia Líquida de Alta Pressão , Claviceps/genética , Ensaio de Imunoadsorção Enzimática , Genótipo , Alemanha , Polônia
5.
Theor Appl Genet ; 133(11): 3001-3015, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32681289

RESUMO

KEY MESSAGE: Hyperspectral and genomic data are effective predictors of biomass yield in winter rye. Variable selection procedures can improve the informativeness of reflectance data. Integrating cutting-edge technologies is imperative to sustainably breed crops for a growing global population. To predict dry matter yield (DMY) in winter rye (Secale cereale L.), we tested single-kernel models based on genomic (GBLUP) and hyperspectral reflectance-derived (HBLUP) relationship matrices, a multi-kernel model combining both matrices and a bivariate model fitted with plant height as a secondary trait. In total, 274 elite rye lines were genotyped using a 10 k-SNP array and phenotyped as testcrosses for DMY and plant height at four locations in Germany in two years (eight environments). Spectral data consisted of 400 discrete narrow bands ranging between 410 and 993 nm collected by an unmanned aerial vehicle (UAV) on two dates on each environment. To reduce data dimensionality, variable selection of bands was performed, resulting in the least absolute shrinkage and selection operator (Lasso) as the best method in terms of predictive abilities. The mean heritability of reflectance data was moderate ([Formula: see text] = 0.72) and highly variable across the spectrum. Correlations between DMY and single bands were generally significant (p < 0.05) but low (≤ 0.29). Across environments and training set (TRN) sizes, the bivariate model showed the highest prediction abilities (0.56-0.75), followed by the multi-kernel (0.45-0.71) and single-kernel (0.33-0.61) models. With reduced TRN, HBLUP performed better than GBLUP. The HBLUP model fitted with a set of selected bands was preferred. Within and across environments, prediction abilities increased with larger TRN. Our results suggest that in the era of digital breeding, the integration of high-throughput phenotyping and genomic selection is a promising strategy to achieve superior selection gains in hybrid rye.


Assuntos
Modelos Genéticos , Secale/crescimento & desenvolvimento , Secale/genética , Biomassa , Cruzamentos Genéticos , Genótipo , Alemanha , Fenótipo , Melhoramento Vegetal , Análise Espectral
6.
Front Plant Sci ; 11: 667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528509

RESUMO

Rye stem rust caused by Puccinia graminis f. sp. secalis can be found in all European rye growing regions. When the summers are warm and dry, the disease can cause severe yield losses over large areas. To date only little research was done in Europe to trigger resistance breeding. To our knowledge, all varieties currently registered in Germany are susceptible. In this study, three biparental populations of inbred lines and one testcross population developed for mapping resistance were investigated. Over 2 years, 68-70 genotypes per population were tested, each in three locations. Combining the phenotypic data with genotyping results of a custom 10k Infinium iSelect single nucleotide polymorphism (SNP) array, we identified both quantitatively inherited adult plant resistance and monogenic all-stage resistance. A single resistance gene, tentatively named Pgs1, located at the distal end of chromosome 7R, could be identified in two independently developed populations. With high probability, it is closely linked to a nucleotide-binding leucine-rich repeat (NB-LRR) resistance gene homolog. A marker for a competitive allele-specific polymerase chain reaction (KASP) genotyping assay was designed that could explain 73 and 97% of the genetic variance in each of both populations, respectively. Additional investigation of naturally occurring rye leaf rust (caused by Puccinia recondita ROEBERGE) revealed a gene complex on chromosome 7R. The gene Pgs1 and further identified quantitative trait loci (QTL) have high potential to be used for breeding stem rust resistant rye.

7.
Theor Appl Genet ; 130(10): 2151-2164, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28730463

RESUMO

KEY MESSAGE: Rye genetic resources provide a valuable source of new alleles for the improvement of frost tolerance in rye breeding programs. Frost tolerance is a must-have trait for winter cereal production in northern and continental cropping areas. Genetic resources should harbor promising alleles for the improvement of frost tolerance of winter rye elite lines. For frost tolerance breeding, the identification of quantitative trait loci (QTL) and the choice of optimum genome-based selection methods are essential. We identified genomic regions involved in frost tolerance of winter rye by QTL mapping in a biparental population derived from a highly frost tolerant selection from the Canadian cultivar Puma and the European elite line Lo157. Lines per se and their testcrosses were phenotyped in a controlled freeze test and in multi-location field trials in Russia and Canada. Three QTL on chromosomes 4R, 5R, and 7R were consistently detected across environments. The QTL on 5R is congruent with the genomic region harboring the Frost resistance locus 2 (Fr-2) in Triticeae. The Puma allele at the Fr-R2 locus was found to significantly increase frost tolerance. A comparison of predictive ability obtained from the QTL-based model with different whole-genome prediction models revealed that besides a few large, also small QTL effects contribute to the genomic variance of frost tolerance in rye. Genomic prediction models assigning a high weight to the Fr-R2 locus allow increasing the selection intensity for frost tolerance by genome-based pre-selection of promising candidates.


Assuntos
Congelamento , Locos de Características Quantitativas , Secale/genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Ligação Genética , Genótipo , Fenótipo , Melhoramento Vegetal
8.
BMC Genet ; 18(1): 51, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28569139

RESUMO

BACKGROUND: The use of multiple genetic backgrounds across years is appealing for genomic prediction (GP) because past years' data provide valuable information on marker effects. Nonetheless, single-year GP models are less complex and computationally less demanding than multi-year GP models. In devising a suitable analysis strategy for multi-year data, we may exploit the fact that even if there is no replication of genotypes across years, there is plenty of replication at the level of marker loci. Our principal aim was to evaluate different GP approaches to simultaneously model genotype-by-year (GY) effects and breeding values using multi-year data in terms of predictive ability. The models were evaluated under different scenarios reflecting common practice in plant breeding programs, such as different degrees of relatedness between training and validation sets, and using a selected fraction of genotypes in the training set. We used empirical grain yield data of a rye hybrid breeding program. A detailed description of the prediction approaches highlighting the use of kinship for modeling GY is presented. RESULTS: Using the kinship to model GY was advantageous in particular for datasets disconnected across years. On average, predictive abilities were 5% higher for models using kinship to model GY over models without kinship. We confirmed that using data from multiple selection stages provides valuable GY information and helps increasing predictive ability. This increase is on average 30% higher when the predicted genotypes are closely related with the genotypes in the training set. A selection of top-yielding genotypes together with the use of kinship to model GY improves the predictive ability in datasets composed of single years of several selection cycles. CONCLUSIONS: Our results clearly demonstrate that the use of multi-year data and appropriate modeling is beneficial for GP because it allows dissecting GY effects from genomic estimated breeding values. The model choice, as well as ensuring that the predicted candidates are sufficiently related to the genotypes in the training set, are crucial.


Assuntos
Genômica/métodos , Melhoramento Vegetal/métodos , Secale/genética , Genoma de Planta , Modelos Genéticos , Locos de Características Quantitativas , Seleção Genética
9.
Plant J ; 89(5): 853-869, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27888547

RESUMO

We report on a whole-genome draft sequence of rye (Secale cereale L.). Rye is a diploid Triticeae species closely related to wheat and barley, and an important crop for food and feed in Central and Eastern Europe. Through whole-genome shotgun sequencing of the 7.9-Gbp genome of the winter rye inbred line Lo7 we obtained a de novo assembly represented by 1.29 million scaffolds covering a total length of 2.8 Gbp. Our reference sequence represents nearly the entire low-copy portion of the rye genome. This genome assembly was used to predict 27 784 rye gene models based on homology to sequenced grass genomes. Through resequencing of 10 rye inbred lines and one accession of the wild relative S. vavilovii, we discovered more than 90 million single nucleotide variants and short insertions/deletions in the rye genome. From these variants, we developed the high-density Rye600k genotyping array with 600 843 markers, which enabled anchoring the sequence contigs along a high-density genetic map and establishing a synteny-based virtual gene order. Genotyping data were used to characterize the diversity of rye breeding pools and genetic resources, and to obtain a genome-wide map of selection signals differentiating the divergent gene pools. This rye whole-genome sequence closes a gap in Triticeae genome research, and will be highly valuable for comparative genomics, functional studies and genome-based breeding in rye.


Assuntos
Cromossomos de Plantas/genética , Secale/genética , DNA de Plantas/genética , Genoma de Planta/genética , Genômica , Genótipo , Sintenia
10.
Theor Appl Genet ; 129(11): 2043-2053, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27480157

RESUMO

KEY MESSAGE: Genomic prediction accuracy can be significantly increased by model calibration across multiple breeding cycles as long as selection cycles are connected by common ancestors. In hybrid rye breeding, application of genome-based prediction is expected to increase selection gain because of long selection cycles in population improvement and development of hybrid components. Essentially two prediction scenarios arise: (1) prediction of the genetic value of lines from the same breeding cycle in which model training is performed and (2) prediction of lines from subsequent cycles. It is the latter from which a reduction in cycle length and consequently the strongest impact on selection gain is expected. We empirically investigated genome-based prediction of grain yield, plant height and thousand kernel weight within and across four selection cycles of a hybrid rye breeding program. Prediction performance was assessed using genomic and pedigree-based best linear unbiased prediction (GBLUP and PBLUP). A total of 1040 S2 lines were genotyped with 16 k SNPs and each year testcrosses of 260 S2 lines were phenotyped in seven or eight locations. The performance gap between GBLUP and PBLUP increased significantly for all traits when model calibration was performed on aggregated data from several cycles. Prediction accuracies obtained from cross-validation were in the order of 0.70 for all traits when data from all cycles (N CS = 832) were used for model training and exceeded within-cycle accuracies in all cases. As long as selection cycles are connected by a sufficient number of common ancestors and prediction accuracy has not reached a plateau when increasing sample size, aggregating data from several preceding cycles is recommended for predicting genetic values in subsequent cycles despite decreasing relatedness over time.


Assuntos
Genoma de Planta , Modelos Genéticos , Melhoramento Vegetal , Secale/genética , Cruzamentos Genéticos , Genômica , Genótipo , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único
11.
BMC Genomics ; 14: 860, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24314298

RESUMO

BACKGROUND: In genomic prediction, an important measure of accuracy is the correlation between the predicted and the true breeding values. Direct computation of this quantity for real datasets is not possible, because the true breeding value is unknown. Instead, the correlation between the predicted breeding values and the observed phenotypic values, called predictive ability, is often computed. In order to indirectly estimate predictive accuracy, this latter correlation is usually divided by an estimate of the square root of heritability. In this study we use simulation to evaluate estimates of predictive accuracy for seven methods, four (1 to 4) of which use an estimate of heritability to divide predictive ability computed by cross-validation. Between them the seven methods cover balanced and unbalanced datasets as well as correlated and uncorrelated genotypes. We propose one new indirect method (4) and two direct methods (5 and 6) for estimating predictive accuracy and compare their performances and those of four other existing approaches (three indirect (1 to 3) and one direct (7)) with simulated true predictive accuracy as the benchmark and with each other. RESULTS: The size of the estimated genetic variance and hence heritability exerted the strongest influence on the variation in the estimated predictive accuracy. Increasing the number of genotypes considerably increases the time required to compute predictive accuracy by all the seven methods, most notably for the five methods that require cross-validation (Methods 1, 2, 3, 4 and 6). A new method that we propose (Method 5) and an existing method (Method 7) used in animal breeding programs were the fastest and gave the least biased, most precise and stable estimates of predictive accuracy. Of the methods that use cross-validation Methods 4 and 6 were often the best. CONCLUSIONS: The estimated genetic variance and the number of genotypes had the greatest influence on predictive accuracy. Methods 5 and 7 were the fastest and produced the least biased, the most precise, robust and stable estimates of predictive accuracy. These properties argue for routinely using Methods 5 and 7 to assess predictive accuracy in genomic selection studies.


Assuntos
Cruzamento , Modelos Genéticos , Plantas/genética , Algoritmos , Simulação por Computador , Genômica , Reprodutibilidade dos Testes , Zea mays/genética
12.
Theor Appl Genet ; 126(1): 13-22, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22886355

RESUMO

Maize (Zea mays L.) breeders evaluate many single-cross hybrids each year in multiple environments. Our objective was to determine the usefulness of genomewide predictions, based on marker effects from maize single-cross data, for identifying the best untested single crosses and the best inbreds within a biparental cross. We considered 479 experimental maize single crosses between 59 Iowa Stiff Stalk Synthetic (BSSS) inbreds and 44 non-BSSS inbreds. The single crosses were evaluated in multilocation experiments from 2001 to 2009 and the BSSS and non-BSSS inbreds had genotypic data for 669 single nucleotide polymorphism (SNP) markers. Single-cross performance was predicted by a previous best linear unbiased prediction (BLUP) approach that utilized marker-based relatedness and information on relatives, and from genomewide marker effects calculated by ridge-regression BLUP (RR-BLUP). With BLUP, the mean prediction accuracy (r(MG)) of single-cross performance was 0.87 for grain yield, 0.90 for grain moisture, 0.69 for stalk lodging, and 0.84 for root lodging. The BLUP and RR-BLUP models did not lead to r(MG) values that differed significantly. We then used the RR-BLUP model, developed from single-cross data, to predict the performance of testcrosses within 14 biparental populations. The r(MG) values within each testcross population were generally low and were often negative. These results were obtained despite the above-average level of linkage disequilibrium, i.e., r(2) between adjacent markers of 0.35 in the BSSS inbreds and 0.26 in the non-BSSS inbreds. Overall, our results suggested that genomewide marker effects estimated from maize single crosses are not advantageous (cofmpared with BLUP) for predicting single-cross performance and have erratic usefulness for predicting testcross performance within a biparental cross.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays/genética , Mapeamento Cromossômico/métodos , Cruzamentos Genéticos , Genes de Plantas , Marcadores Genéticos/genética , Variação Genética , Genoma , Genoma de Planta , Genótipo , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único , Análise de Regressão , Reprodutibilidade dos Testes
13.
Neurobiol Dis ; 40(2): 467-77, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20659557

RESUMO

Much evidence suggests that targeting the neurotensin (NT) system may provide a novel and promising treatment for schizophrenia. Our recent work shows that: NTS1 knockout (NTS1(-/-)) mice may provide a potential animal model for studying schizophrenia by investigating the effect of deletion NTS1 receptor on amphetamine-induced hyperactivity and neurochemical changes. The data indicate a hyper-dopaminergic state similar to the excessive striatal DA activity reported in schizophrenia. The present study was done to determine if NTS1(-/-) mice also have similar changes in behavior, in prefrontal neurotransmitters, and in protein expression, as observed in wild type (WT) mice treated with the psychotomimetic phencylclidine (PCP), an animal model for schizophrenia. Our results showed many similarities between untreated NTS1(-/-) mice and WT mice chronically treated with PCP (as compared with untreated WT mice): 1) lower PCP-induced locomotor activity; 2) similar avolition-like behavior in forced-swim test and tail suspension test; 3) lower prefrontal glutamate levels; 4) less PCP-induced dopamine release in medial prefrontal cortex (mPFC); and 5) down-regulation of mRNA and protein for DA D(1), DA D(2), and NMDAR2A in mPFC. Therefore, these data strengthen the hypothesis that the NTS1(-/-) mouse is an animal model of schizophrenia, particularly for the dysfunction of the prefrontal cortex. In addition, after chronic PCP administration, the DA D(1) receptor was up-regulated in NTS1(-/-) mice, results which suggest a possible interaction of NTS1/DA D(1) in mPFC contributing to chronic PCP-induced schizophrenia-like signs.


Assuntos
Comportamento Animal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores de Neurotensina/deficiência , Esquizofrenia/genética , Esquizofrenia/metabolismo , Psicologia do Esquizofrênico , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Dopamina/genética , Dopamina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Resposta de Imobilidade Tônica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Fenciclidina , Reação em Cadeia da Polimerase , Córtex Pré-Frontal/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , Esquizofrenia/induzido quimicamente , Natação/psicologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
14.
Neuropharmacology ; 58(7): 1174-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20193696

RESUMO

Neurotensin (NT) is a tridecapeptide that acts as a neuromodulator in the central nervous system mainly through two NT receptors: NTS1 and NTS2. The present study was done to determine the roles of NTS1 and NTS2 on amino acid release in striatum with the use of NTS1 or NTS2 knockout ((-/-)) mice given d-amphetamine. Both NTS1(-/-) and NTS2(-/-) mice had lower extracellular concentrations of D-serine in striatum than did wild type (WT) mice. NTS2(-/-) but not NTS1(-/-) mice also had significantly lower basal concentrations of glutamate in striatum as compared to that for WT mice. Systemic administration of d-amphetamine (4 mg/kg, ip) increased glutamate release by 500% in WT mice, as compared to 300% in NTS2(-/-) mice, and 250% in NTS1(-/-) mice. Additionally, d-amphetamine injection caused a 4-fold increase in GABA release in both WT and NTS2(-/-) mice, but only a 2-fold increase in NTS1(-/-) mice. Therefore, NTS1 and NTS2 modulate basal release of D-serine and glutamate, and also d-amphetamine-induced GABA and glutamate release in striatum. These results provide further support for the involvement of NT receptors in the pathogenesis of schizophrenia and provide a better understanding of the imbalance of amino acid systems through investigation of a DA-based animal model.


Assuntos
Aminoácidos/metabolismo , Anfetamina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/efeitos dos fármacos , Receptores de Neurotensina/metabolismo , Animais , Corpo Estriado/metabolismo , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Neurológicos , Receptores de Neurotensina/deficiência , Receptores de Neurotensina/genética , Esquizofrenia/metabolismo , Serina/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...