Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 23(1): e52234, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34821000

RESUMO

γδ T cells are a conserved population of lymphocytes that contributes to anti-tumor responses through its overt type 1 inflammatory and cytotoxic properties. We have previously shown that human γδ T cells acquire this profile upon stimulation with IL-2 or IL-15, in a differentiation process dependent on MAPK/ERK signaling. Here, we identify microRNA-181a as a key modulator of human γδ T cell differentiation. We observe that miR-181a is highly expressed in patients with prostate cancer and that this pattern associates with lower expression of NKG2D, a critical mediator of cancer surveillance. Interestingly, miR-181a expression negatively correlates with an activated type 1 effector profile obtained from in vitro differentiated γδ T cells and miR-181a overexpression restricts their levels of NKG2D and TNF-α. Upon in silico analysis, we identify two miR-181a candidate targets, Map3k2 and Notch2, which we validate via overexpression coupled with luciferase assays. These results reveal a novel role for miR-181a as critical regulator of human γδ T cell differentiation and highlight its potential for manipulation of γδ T cells in next-generation immunotherapies.


Assuntos
Diferenciação Celular , MicroRNAs , Receptor Notch2 , Linfócitos T/citologia , Humanos , Ativação Linfocitária , MAP Quinase Quinase Quinase 2/metabolismo , Masculino , MicroRNAs/genética , Neoplasias da Próstata , Receptor Notch2/metabolismo , Transdução de Sinais
2.
Mol Neurobiol ; 54(8): 6107-6119, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27699602

RESUMO

Mitochondrial dysfunction has been deeply implicated in the pathogenesis of several neurodegenerative diseases. Thus, to keep a healthy mitochondrial population, a balanced mitochondrial turnover must be achieved. Tauroursodeoxycholic acid (TUDCA) is neuroprotective in various neurodegenerative disease models; however, the mechanisms involved are still incompletely characterized. In this study, we investigated the neuroprotective role of TUDCA against mitochondrial damage triggered by the mitochondrial uncoupler carbonyl cyanide m-chlorophelyhydrazone (CCCP). Herein, we show that TUDCA significantly prevents CCCP-induced cell death, ROS generation, and mitochondrial damage. Our results indicate that the neuroprotective role of TUDCA in this cell model is mediated by parkin and depends on mitophagy. The demonstration that pharmacological up-regulation of mitophagy by TUDCA prevents neurodegeneration provides new insights for the use of TUDCA as a modulator of mitochondrial activity and turnover, with implications in neurodegenerative diseases.


Assuntos
Morte Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ácido Tauroquenodesoxicólico/farmacologia , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...