Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 25081, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27117333

RESUMO

Coral reef success is largely dependent on the symbiosis between coral hosts and dinoflagellate symbionts belonging to the genus Symbiodinium. Elevated temperatures can result in the expulsion of Symbiodinium or loss of their photosynthetic pigments and is known as coral bleaching. It has been postulated that the expression of light-harvesting protein complexes (LHCs), which bind chlorophylls (chl) and carotenoids, are important in photobleaching. This study explored the effect a sixteen-day thermal stress (increasing daily from 25-34 °C) on integral LHC (chlorophyll a-chlorophyll c2-peridinin protein complex (acpPC)) gene expression in Symbiodinium within the coral Acropora aspera. Thermal stress leads to a decrease in Symbiodinium photosynthetic efficiency by day eight, while symbiont density was significantly lower on day sixteen. Over this time period, the gene expression of five Symbiodinium acpPC genes was quantified. Three acpPC genes exhibited up-regulated expression when corals were exposed to temperatures above 31.5 °C (acpPCSym_1:1, day sixteen; acpPCSym_15, day twelve; and (acpPCSym_18), day ten and day sixteen). In contrast, the expression of acpPCSym_5:1 and acpPCSym_10:1 was unchanged throughout the experiment. Interestingly, the three acpPC genes with increased expression cluster together in a phylogenetic analysis of light-harvesting complexes.


Assuntos
Antozoários/fisiologia , Antozoários/parasitologia , Dinoflagellida/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Temperatura Alta , Complexos de Proteínas Captadores de Luz/biossíntese , Estresse Fisiológico , Animais , Perfilação da Expressão Gênica
2.
Ecol Evol ; 6(5): 1317-27, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27087920

RESUMO

Understanding how mutualisms evolve in response to a changing environment will be critical for predicting the long-term impacts of global changes, such as increased N (nitrogen) deposition. Bacterial mutualists in particular might evolve quickly, thanks to short generation times and the potential for independent evolution of plasmids through recombination and/or HGT (horizontal gene transfer). In a previous work using the legume/rhizobia mutualism, we demonstrated that long-term nitrogen fertilization caused the evolution of less-mutualistic rhizobia. Here, we use our 63 previously isolated rhizobium strains in comparative phylogenetic and quantitative genetic analyses to determine the degree to which variation in partner quality is attributable to phylogenetic relationships among strains versus recent genetic changes in response to N fertilization. We find evidence of distinct evolutionary relationships between chromosomal and pSym genes, and broad similarity between pSym genes. We also find that nifD has a unique evolutionary history that explains much of the variation in partner quality, and suggest MoFe subunit interaction sites in the evolution of less-mutualistic rhizobia. These results provide insight into the mechanisms behind the evolutionary response of rhizobia to long-term N fertilization, and we discuss the implications of our results for the evolution of the mutualism.

3.
PLoS One ; 10(8): e0136130, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26308620

RESUMO

Marine fungi are an understudied group of eukaryotic microorganisms characterized by unresolved genealogies and unstable classification. Whereas DNA barcoding via the nuclear ribosomal internal transcribed spacer (ITS) provides a robust and rapid tool for fungal species delineation, accurate classification of fungi is often arduous given the large number of partial or unknown barcodes and misidentified isolates deposited in public databases. This situation is perpetuated by a paucity of cultivable fungal strains available for phylogenetic research linked to these data sets. We analyze ITS barcodes produced from a subsample (290) of 1781 cultured isolates of marine-derived fungi in the Bioresources Library located at the Australian Institute of Marine Science (AIMS). Our analysis revealed high levels of under-explored fungal diversity. The majority of isolates were ascomycetes including representatives of the subclasses Eurotiomycetidae, Hypocreomycetidae, Sordariomycetidae, Pleosporomycetidae, Dothideomycetidae, Xylariomycetidae and Saccharomycetidae. The phylum Basidiomycota was represented by isolates affiliated with the genera Tritirachium and Tilletiopsis. BLAST searches revealed 26 unknown OTUs and 50 isolates corresponding to previously uncultured, unidentified fungal clones. This study makes a significant addition to the availability of barcoded, culturable marine-derived fungi for detailed future genomic and physiological studies. We also demonstrate the influence of commonly used alignment algorithms and genetic distance measures on the accuracy and comparability of estimating Operational Taxonomic Units (OTUs) by the automatic barcode gap finder (ABGD) method. Large scale biodiversity screening programs that combine datasets using algorithmic OTU delineation pipelines need to ensure compatible algorithms have been used because the algorithm matters.


Assuntos
Algoritmos , Biodiversidade , Código de Barras de DNA Taxonômico , Fungos/isolamento & purificação , Variação Genética/genética , Poríferos/microbiologia , Água do Mar/microbiologia , Animais , DNA Espaçador Ribossômico/genética , Fungos/classificação , Fungos/genética , Filogenia , Análise de Sequência de DNA/métodos , Especificidade da Espécie
4.
Methods Mol Biol ; 1055: 129-47, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23963908

RESUMO

Metabolomics and in particular, nontargeted metabolomics, has become a popular technique for the study of biological samples as it provides considerable amounts of information on extractable metabolites and is ideal for studying the metabolic response of an organism to stressors in its environment. One such organism, the symbiotic hard coral, presents its own complexity when considering a metabolomics approach in that it forms intricate associations with an array of symbiotic macro- and microbiota. While not discounting the importance of these many associations to the function of the coral holobiont, the coral-Symbiodinium relationship has been the most studied to date and as such, is the primary focus of this extraction protocol. This protocol provides details for the sample collection, extraction, and measurement of hard coral holobiont metabolites using both (1)H nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography coupled with mass spectrometry (LC-MS). Using this nontargeted metabolomics approach, the holobiont metabolism can be investigated for perturbations resulting from either (1) natural or anthropogenic environmental challenges, (2) the controlled application of stressors, and (3) differences between phenotypes or species. Consequently, this protocol will benefit both environmental and natural products based research of hard coral and their algal symbionts. Every effort has been made to provide the reader with all the details required to perform this protocol, including many of the costly and time consuming "pitfalls" or "traps" that were discovered during its development. As a result, this protocol can be confidently accomplished by those with less experience in the extraction and analysis of symbiotic hard coral, requiring minimal user input whilst ensuring reproducible and reliable results using readily available lab ware and reagents.


Assuntos
Antozoários/química , Antozoários/metabolismo , Cromatografia Líquida/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Animais , Clorófitas/química , Clorófitas/metabolismo , Clorófitas/fisiologia , Simbiose
5.
Mar Drugs ; 8(10): 2546-68, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21116405

RESUMO

Symbioses play an important role within the marine environment. Among the most well known of these symbioses is that between coral and the photosynthetic dinoflagellate, Symbiodinium spp. Understanding the metabolic relationships between the host and the symbiont is of the utmost importance in order to gain insight into how this symbiosis may be disrupted due to environmental stressors. Here we summarize the metabolites related to nutritional roles, diel cycles and the common metabolites associated with the invertebrate-Symbiodinium relationship. We also review the more obscure metabolites and toxins that have been identified through natural products and biomarker research. Finally, we discuss the key role that metabolomics and functional genomics will play in understanding these important symbioses.


Assuntos
Antozoários/metabolismo , Dinoflagellida/metabolismo , Invertebrados/metabolismo , Metabolômica , Fotossíntese , Simbiose , Animais , Antozoários/química , Dinoflagellida/química , Ecossistema , Oceanos e Mares , Água do Mar , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...