Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 153(16): 164705, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138429

RESUMO

Methylglyoxal (MG)-an atmospherically important α-dicarbonyl implicated in aqueous-phase secondary organic aerosol formation-is known to be surface-active. Due to the presence of carbonyl moieties, MG can hydrate to form geminal diols in solution. Recently, it has been shown that MG exists predominantly as a monohydrate at the neat air-water interface. However, inorganic aerosol constituents have the potential to "salt-out" MG to the interface, shift its hydration equilibria, and catalyze self- and cross-oligomerization reactions. Here, we study the influence of the non-reactive salt, sodium chloride (NaCl), on the MG's surface adsorption and hydration state using vibrational sum frequency spectroscopy. The presence of NaCl is found to enhance MG's surface activity but not to the extent that water is fully excluded from the interface. Perturbations in the interfacial water structure are attributed to shifts in MG's hydration equilibrium at higher ionic strengths. Evidence of surface-active MG oligomer species is presented, but such oligomers are not thought to contribute significantly to the interfacial population. This work builds on the published studies on MG in pure water and gives insight into the interface's perturbation by NaCl, which has important implications for understanding MG's atmospheric fate.

2.
J Phys Chem A ; 123(49): 10609-10619, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31651168

RESUMO

It is well known that atmospheric aerosol play important roles in the environment. However, there is still much to learn about the processes that form aerosols, particularly aqueous secondary organic aerosols. While pyruvic acid (PA) is often better known for its biological significance, it is also an abundant atmospheric secondary organic ketoacid. It has been shown that, in bulk aqueous environments, PA exists in equilibrium between unhydrated α-keto carboxylic acid (PYA) and singly hydrated geminal diol carboxylic acid (PYT), favoring the diol. These studies have also identified oligomer products in the bulk, including zymonic acid (ZYA) and parapyruvic acid (PPA). The surface behavior of these oligomers has not been studied, and their contributions (if any) to the interface are unknown. Here, we address this knowledge gap by examining the molecular species present at the interface of aqueous PA systems using vibrational sum frequency spectroscopy (VSFS), a surface-sensitive technique. VSFS provides information about interfacial molecular populations, orientations, and behaviors. Computational studies using classical molecular dynamics and quantum mechanical density functional theory are employed in combination to afford further insights into these systems. Our studies indicate populations of at least two intensely surface-active oligomeric species at the interface. Computational results demonstrate that, along with PYA and PYT, both PPA and ZYA are surface-active with strong VSF responses that can account for features in the experimental spectra.

3.
J Phys Chem B ; 123(40): 8519-8531, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31513405

RESUMO

Mixed surfactant systems at the oil-water interface play a vital role in applications ranging widely from drug delivery to oil-spill remediation. Synergistic mixtures are superior emulsifiers and more effective at modifying surface tension than either component alone. Mixtures of surfactants with dissimilar polar head groups are of particular interest because of the additional degree of control they offer. The interplay of hydrophobic and electrostatic effects in these systems is not well understood, in part because of the difficulty in examining their behavior at the buried oil-water interface where they reside. Here, surface-specific vibrational sum frequency spectroscopy is utilized in combination with surface tensiometry and computational methods to probe the cooperative molecular interactions between a cationic surfactant cetyltrimethylammonium bromide (CTAB) and a nonionic alcohol (1-hexanol) that induce the two initially reluctant surfactants to coadsorb synergistically at the interface. A careful deuteration study of CTAB reveals that hexanol cooperates with CTAB such that both molecules preferentially orient at the interface for sufficiently large enough concentrations of hexanol. This work's methodology is unique and serves as a guide for future explorations of macroscopic properties in these complex systems. Results from this work also provide valuable insights into how interfacial ordering impacts surface tensiometry measurements for nonionic surfactants.

4.
J Phys Chem A ; 122(15): 3837-3849, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29608301

RESUMO

Small atmospheric aldehydes and ketones are known to play a significant role in the formation of secondary organic aerosols (SOA). However, many of them are difficult to experimentally isolate, as they tend to form hydration and oligomer species. Hydroxyacetone (HA) is unusual in this class as it contributes to SOA while existing predominantly in its unhydrated monomeric form. This allows HA to serve as a valuable model system for similar secondary organic carbonyls. In this paper the surface behavior of HA at the air-water interface has been investigated using vibrational sum frequency (VSF) spectroscopy and Wilhelmy plate surface tensiometry in combination with computational molecular dynamics simulations and density functional theory calculations. The experimental results demonstrate that HA has a high degree of surface activity and is ordered at the interface. Furthermore, oriented water is observed at the interface, even at high HA concentrations. Spectral features also reveal the presence of both cis and trans HA conformers at the interface, in differing orientations. Molecular dynamics results indicate conformer dependent shifts in HA orientation between the subsurface (∼5 Šdeep) and surface. Together, these results provide a picture of a highly dynamic, but statistically ordered, interface composed of multiple HA conformers with solvated water. These results have implications for HA's behavior in aqueous particles, which may affect its role in the atmosphere and SOA formation.

5.
J Phys Chem A ; 119(24): 6391-403, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25989368

RESUMO

Aqueous-phase processing of methylglyoxal (MG) has been suggested to constitute an important source of secondary organic aerosol (SOA). The uptake of MG to aqueous particles is higher than expected because its carbonyl moieties can hydrate to form geminal diols, as well as because MG and its hydration products can undergo aldol condensation reactions to form larger oligomers in solution. MG is known to be surface active, but an improved description of its surface behavior is crucial to understanding MG-SOA formation. These studies investigate MG adsorption, focusing on its hydration state at the air-water interface, using a combined experimental and theoretical approach that involves vibrational sum frequency spectroscopy, molecular dynamics simulations, and density functional theory calculations. Together, the experimental and theoretical data show that MG exists predominantly in a singly hydrated state (diol) at the interface, with a diol-tetrol ratio at the surface higher than that for the bulk. In addition to exhibiting a strong surface activity, we find that MG significantly perturbs the water structure at the interface. The results have implications for understanding the atmospheric fate of methylglyoxal.


Assuntos
Aerossóis/química , Ar , Aldeído Pirúvico/química , Água/química , Modelos Químicos , Conformação Molecular , Simulação de Dinâmica Molecular , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...