Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 137(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38881365

RESUMO

Endothelial cells lining the blood vessel wall communicate intricately with the surrounding extracellular matrix, translating mechanical cues into biochemical signals. Moreover, vessels require the capability to enzymatically degrade the matrix surrounding them, to facilitate vascular expansion. c-Src plays a key role in blood vessel growth, with its loss in the endothelium reducing vessel sprouting and focal adhesion signalling. Here, we show that constitutive activation of c-Src in endothelial cells results in rapid vascular expansion, operating independently of growth factor stimulation or fluid shear stress forces. This is driven by an increase in focal adhesion signalling and size, with enhancement of localised secretion of matrix metalloproteinases responsible for extracellular matrix remodelling. Inhibition of matrix metalloproteinase activity results in a robust rescue of the vascular expansion elicited by heightened c-Src activity. This supports the premise that moderating focal adhesion-related events and matrix degradation can counteract abnormal vascular expansion, with implications for pathologies driven by unusual vascular morphologies.


Assuntos
Matriz Extracelular , Adesões Focais , Quinases da Família src , Adesões Focais/metabolismo , Matriz Extracelular/metabolismo , Humanos , Quinases da Família src/metabolismo , Quinases da Família src/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Animais , Proteína Tirosina Quinase CSK/metabolismo , Transdução de Sinais , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Metaloproteinases da Matriz/metabolismo
2.
Sci Signal ; 16(782): eabq1366, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098119

RESUMO

Macrophages are key cellular contributors to the pathogenesis of COVID-19, the disease caused by the virus SARS-CoV-2. The SARS-CoV-2 entry receptor ACE2 is present only on a subset of macrophages at sites of SARS-CoV-2 infection in humans. Here, we investigated whether SARS-CoV-2 can enter macrophages, replicate, and release new viral progeny; whether macrophages need to sense a replicating virus to drive cytokine release; and, if so, whether ACE2 is involved in these mechanisms. We found that SARS-CoV-2 could enter, but did not replicate within, ACE2-deficient human primary macrophages and did not induce proinflammatory cytokine expression. By contrast, ACE2 overexpression in human THP-1-derived macrophages permitted SARS-CoV-2 entry, processing and replication, and virion release. ACE2-overexpressing THP-1 macrophages sensed active viral replication and triggered proinflammatory, antiviral programs mediated by the kinase TBK-1 that limited prolonged viral replication and release. These findings help elucidate the role of ACE2 and its absence in macrophage responses to SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/genética , Citocinas , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Macrófagos/metabolismo , Vírion/metabolismo
3.
Clin Transl Immunology ; 10(10): e1350, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721846

RESUMO

OBJECTIVES: Thrombotic and microvascular complications are frequently seen in deceased COVID-19 patients. However, whether this is caused by direct viral infection of the endothelium or inflammation-induced endothelial activation remains highly contentious. METHODS: Here, we use patient autopsy samples, primary human endothelial cells and an in vitro model of the pulmonary epithelial-endothelial cell barrier. RESULTS: We show that primary human endothelial cells express very low levels of the SARS-CoV-2 receptor ACE2 and the protease TMPRSS2, which blocks their capacity for productive viral infection, and limits their capacity to produce infectious virus. Accordingly, endothelial cells can only be infected when they overexpress ACE2, or are exposed to very high concentrations of SARS-CoV-2. We also show that SARS-CoV-2 does not infect endothelial cells in 3D vessels under flow conditions. We further demonstrate that in a co-culture model endothelial cells are not infected with SARS-CoV-2. Endothelial cells do however sense and respond to infection in the adjacent epithelial cells, increasing ICAM-1 expression and releasing pro-inflammatory cytokines. CONCLUSIONS: Taken together, these data suggest that in vivo, endothelial cells are unlikely to be infected with SARS-CoV-2 and that infection may only occur if the adjacent pulmonary epithelium is denuded (basolateral infection) or a high viral load is present in the blood (apical infection). In such a scenario, whilst SARS-CoV-2 infection of the endothelium can occur, it does not contribute to viral amplification. However, endothelial cells may still play a key role in SARS-CoV-2 pathogenesis by sensing adjacent infection and mounting a pro-inflammatory response to SARS-CoV-2.

4.
Sci Signal ; 9(437): ra72, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27436360

RESUMO

Activation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) by VEGF binding is critical for vascular morphogenesis. In addition, VEGF disrupts the endothelial barrier by triggering the phosphorylation and turnover of the junctional molecule VE-cadherin, a process mediated by the VEGFR2 downstream effectors T cell-specific adaptor (TSAd) and the tyrosine kinase c-Src. We investigated whether the VEGFR2-TSAd-c-Src pathway was required for angiogenic sprouting. Indeed, Tsad-deficient embryoid bodies failed to sprout in response to VEGF. Tsad-deficient mice displayed impaired angiogenesis specifically during tracheal vessel development, but not during retinal vasculogenesis, and in VEGF-loaded Matrigel plugs, but not in those loaded with FGF. The SH2 and proline-rich domains of TSAd bridged VEGFR2 and c-Src, and this bridging was critical for the localization of activated c-Src to endothelial junctions and elongation of the growing sprout, but not for selection of the tip cell. These results revealed that vascular sprouting and permeability are both controlled through the VEGFR2-TSAd-c-Src signaling pathway in a subset of tissues, which may be useful in developing strategies to control tissue-specific pathological angiogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Endoteliais/metabolismo , Neovascularização Patológica/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína Tirosina Quinase CSK , Linhagem Celular , Células Endoteliais/patologia , Camundongos , Camundongos Knockout , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Quinases da Família src/genética
5.
Vasc Cell ; 4(1): 15, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22943568

RESUMO

Lymphatic vessels share an intimate relationship with hematopoietic cells that commences during embryogenesis and continues throughout life. Lymphatic vessels provide a key conduit for immune cell trafficking during immune surveillance and immune responses and in turn, signals produced by immune lineage cells in settings of inflammation regulate lymphatic vessel growth and activity. In the majority of cases, the recruitment and activation of immune cells during inflammation promotes the growth and development of lymphatic vessels (lymphangiogenesis) and enhances lymph flow, effects that amplify cell trafficking to local lymph nodes and facilitate the mounting of effective immune responses. Macrophages comprise a major, heterogeneous lineage of immune cells that, in addition to key roles in innate and adaptive immunity, perform diverse tasks important for tissue development, homeostasis and repair. Here, we highlight the emerging roles of macrophages in lymphangiogenesis, both during development and in settings of pathology. While much attention has focused on the production of pro-lymphangiogenic stimuli including VEGF-C and VEGF-D by macrophages in models of inflammation including cancer, there is ample evidence to suggest that macrophages provide additional signals important for the regulation of lymphatic vascular growth, morphogenesis and function.

6.
Development ; 137(22): 3899-910, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20978081

RESUMO

Macrophages have been suggested to stimulate neo-lymphangiogenesis in settings of inflammation via two potential mechanisms: (1) acting as a source of lymphatic endothelial progenitor cells via the ability to transdifferentiate into lymphatic endothelial cells and be incorporated into growing lymphatic vessels; and (2) providing a crucial source of pro-lymphangiogenic growth factors and proteases. We set out to establish whether cells of the myeloid lineage are important for development of the lymphatic vasculature through either of these mechanisms. Here, we provide lineage tracing evidence to demonstrate that lymphatic endothelial cells arise independently of the myeloid lineage during both embryogenesis and tumour-stimulated lymphangiogenesis in the mouse, thus excluding macrophages as a source of lymphatic endothelial progenitor cells in these settings. In addition, we demonstrate that the dermal lymphatic vasculature of PU.1(-/-) and Csf1r(-/-) macrophage-deficient mouse embryos is hyperplastic owing to elevated lymphatic endothelial cell proliferation, suggesting that cells of the myeloid lineage provide signals that act to restrain lymphatic vessel calibre in the skin during development. In contrast to what has been demonstrated in settings of inflammation, macrophages do not comprise the principal source of pro-lymphangiogenic growth factors, including VEGFC and VEGFD, in the embryonic dermal microenvironment, illustrating that the sources of patterning and proliferative signals driving embryonic and disease-stimulated lymphangiogenesis are likely to be distinct.


Assuntos
Derme/irrigação sanguínea , Células Endoteliais/citologia , Vasos Linfáticos/citologia , Macrófagos/metabolismo , Angiopoietina-2/metabolismo , Animais , Proliferação de Células , Células Endoteliais/metabolismo , Glicoproteínas/metabolismo , Vasos Linfáticos/embriologia , Proteínas de Membrana Transportadoras , Camundongos , Monócitos/citologia , Monócitos/metabolismo , Células Mieloides/citologia , Neovascularização Patológica/patologia
7.
Dev Dyn ; 237(7): 1901-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18570254

RESUMO

Expression of the hyaluronan receptor LYVE-1 is one of few available criteria used to discriminate lymphatic vessels from blood vessels. Until now, endothelial LYVE-1 expression was reported to be restricted to lymphatic vessels and to lymph node, liver, and spleen sinuses. Here, we provide the first evidence that LYVE-1 is expressed on blood vessels of the yolk sac during mouse embryogenesis. LYVE-1 is ubiquitously expressed in the yolk sac capillary plexus at E9.5, then becomes progressively down-regulated on arterial endothelium during vascular remodelling. LYVE-1 is also expressed on intra-embryonic arterial and venous endothelium at early embryonic stages and on endothelial cells of the lung and endocardium throughout embryogenesis. These findings have important implications for the use of LYVE-1 as a specific marker of the lymphatic vasculature during embryogenesis and neo-lymphangiogenesis. Our data are also the first demonstration, to our knowledge, that the mouse yolk sac is devoid of lymphatic vessels.


Assuntos
Vasos Sanguíneos/metabolismo , Glicoproteínas/biossíntese , Vasos Linfáticos/metabolismo , Animais , Vasos Sanguíneos/embriologia , Endocárdio/citologia , Endocárdio/embriologia , Endocárdio/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Imuno-Histoquímica , Pulmão/citologia , Pulmão/embriologia , Pulmão/metabolismo , Vasos Linfáticos/embriologia , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...