Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 11: 611884, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362585

RESUMO

Astrocytic Ca2+ fluctuations associated with functional hyperemia have typically been measured from large cellular compartments such as the soma, the whole arbor and the endfoot. The most prominent Ca2+ event is a large magnitude, delayed signal that follows vasodilation. However, previous work has provided little information about the spatio-temporal properties of such Ca2+ transients or their heterogeneity. Here, using an awake, in vivo two-photon fluorescence-imaging model, we performed detailed profiling of delayed astrocytic Ca2+ signals across astrocytes or within individual astrocyte compartments using small regions of interest next to penetrating arterioles and capillaries along with vasomotor responses to vibrissae stimulation. We demonstrated that while a 5-s air puff that stimulates all whiskers predominantly generated reproducible functional hyperemia in the presence or absence of astrocytic Ca2+ changes, whisker stimulation inconsistently produced astrocytic Ca2+ responses. More importantly, these Ca2+ responses were heterogeneous among subcellular structures of the astrocyte and across different astrocytes that resided within the same field of view. Furthermore, we found that whisker stimulation induced discrete Ca2+ "hot spots" that spread regionally within the endfoot. These data reveal that astrocytic Ca2+ dynamics associated with the microvasculature are more complex than previously thought, and highlight the importance of considering the heterogeneity of astrocytic Ca2+ activity to fully understanding neurovascular coupling.

2.
Arterioscler Thromb Vasc Biol ; 40(3): 733-750, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31826653

RESUMO

OBJECTIVE: Cerebral arterial networks match blood flow delivery with neural activity. Neurovascular response begins with a stimulus and a focal change in vessel diameter, which by themselves is inconsequential to blood flow magnitude, until they spread and alter the contractile status of neighboring arterial segments. We sought to define the mechanisms underlying integrated vascular behavior and considered the role of intercellular electrical signaling in this phenomenon. Approach and Results: Electron microscopic and histochemical analysis revealed the structural coupling of cerebrovascular cells and the expression of gap junctional subunits at the cell interfaces, enabling intercellular signaling among vascular cells. Indeed, robust vasomotor conduction was detected in human and mice cerebral arteries after focal vessel stimulation: a response attributed to endothelial gap junctional communication, as its genetic alteration attenuated this behavior. Conducted responses were observed to ascend from the penetrating arterioles, influencing the contractile status of cortical surface vessels, in a simulated model of cerebral arterial network. Ascending responses recognized in vivo after whisker stimulation were significantly attenuated in mice with altered endothelial gap junctional signaling confirming that gap junctional communication drives integrated vessel responses. The diminishment in vascular communication also impaired the critical ability of the cerebral vasculature to maintain blood flow homeostasis and hence tissue viability after stroke. CONCLUSIONS: Our findings highlight the integral role of intercellular electrical signaling in transcribing focal stimuli into coordinated changes in cerebrovascular contractile activity and expose, a hitherto unknown mechanism for flow regulation after stroke.


Assuntos
Isquemia Encefálica/fisiopatologia , Comunicação Celular , Circulação Cerebrovascular , Células Endoteliais , Junções Comunicantes , Artéria Cerebral Média/inervação , Acoplamento Neurovascular , Acidente Vascular Cerebral/fisiopatologia , Adulto , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Simulação por Computador , Conexinas/genética , Conexinas/metabolismo , Modelos Animais de Doenças , Condutividade Elétrica , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Feminino , Junções Comunicantes/metabolismo , Junções Comunicantes/ultraestrutura , Homeostase , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Artéria Cerebral Média/metabolismo , Artéria Cerebral Média/ultraestrutura , Modelos Cardiovasculares , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Proteína alfa-5 de Junções Comunicantes
3.
Adv Exp Med Biol ; 903: 209-19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27343099

RESUMO

Altering cerebral blood flow through the control of cerebral vessel diameter is critical so that the delivery of molecules important for proper brain functioning is matched to the activity level of neurons. Although the close relationship of brain glia known as astrocytes with cerebral blood vessels has long been recognized, it is only recently that these cells have been demonstrated to translate information on the activity level and energy demands of neurons to the vasculature. In particular, astrocytes respond to elevations in extracellular glutamate as a consequence of synaptic transmission through the activation of group 1 metabotropic glutamate receptors. These Gq-protein coupled receptors elevate intracellular calcium via IP3 signaling. A close examination of astrocyte endfeet calcium signals has been shown to cause either vasoconstriction or vasodilation. Common to both vasomotor responses is the generation of arachidonic acid in astrocytes by calcium sensitive phospholipase A2. Vasoconstriction ensues from the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid, while vasodilation ensues from the production of epoxyeicosatrienoic acids or prostaglandins. Factors that determine whether constrictor or dilatory pathways predominate include brain oxygen, lactate, adenosine as well as nitric oxide. Changing the oxygen level itself leads to many downstream changes that facilitate the switch from vasoconstriction at high oxygen to vasodilation at low oxygen. These findings highlight the importance of astrocytes as sensors of neural activity and metabolism to coordinate the delivery of essential nutrients via the blood to the working cells.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Circulação Cerebrovascular/fisiologia , Oxigênio/metabolismo , Animais , Metabolismo Energético , Humanos , Vasoconstrição
4.
Biochem Cell Biol ; 93(5): 452-65, 2015 10.
Artigo em Inglês | MEDLINE | ID: mdl-26151290

RESUMO

The prevalence of type 2 diabetes (T2D) has increased dramatically over the past two decades, not only among adults but also among adolescents. T2D is a systemic disorder affecting every organ system and is especially damaging to the cardiovascular system, predisposing individuals to severe cardiac and vascular complications. The precise mechanisms that cause T2D are an area of active research. Most current theories suggest that the process begins with peripheral insulin resistance that precedes failure of the pancreatic ß-cells to secrete sufficient insulin to maintain normoglycemia. A growing body of literature has highlighted multiple aspects of mitochondrial function, including oxidative phosphorylation, lipid homeostasis, and mitochondrial quality control in the regulation of peripheral insulin sensitivity. Whether the cellular mechanisms of insulin resistance in adults are comparable to that in adolescents remains unclear. This review will summarize both clinical and basic studies that shed light on how alterations in skeletal muscle mitochondrial function contribute to whole body insulin resistance and will discuss the evidence supporting high-intensity exercise training as a therapy to circumvent skeletal muscle mitochondrial dysfunction to restore insulin sensitivity in both adults and adolescents.


Assuntos
Diabetes Mellitus Tipo 2/prevenção & controle , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Adolescente , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Resistência à Insulina , Músculo Esquelético/patologia
5.
Neuron ; 75(6): 1094-104, 2012 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-22998876

RESUMO

Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO3⁻) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response to HCO3⁻ entry via the electrogenic NaHCO3 cotransporter (NBC). Activated sAC increases intracellular cAMP levels, causing glycogen breakdown, enhanced glycolysis, and the release of lactate into the extracellular space, which is subsequently taken up by neurons for use as an energy substrate. This process is recruited over a broad physiological range of [K⁺](ext) and also during aglycemic episodes, helping to maintain synaptic function. These data reveal a molecular pathway in astrocytes that is responsible for brain metabolic coupling to neurons.


Assuntos
Adenilil Ciclases/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Bicarbonatos/farmacologia , Hipocampo/citologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , 1-Metil-3-Isobutilxantina/farmacologia , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/ultraestrutura , Ácidos Cumáricos/farmacologia , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Glucose/deficiência , Glicogênio/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Ácido Láctico/metabolismo , Microscopia Imunoeletrônica , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Inibidores de Fosfodiesterase/farmacologia , Potássio/metabolismo , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
6.
Nat Protoc ; 6(3): 327-37, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21372813

RESUMO

This protocol describes a method for efficient chemical synthesis of an analog of inositol-1,4,5-trisphosphate (IP(3)) hexakis acetoxymethyl ester having an ortho-nitroveratryl photochemical caging group on the 6-hydroxyl position. The six esters render the probe membrane permeant, such that it can be loaded into intact living cells in vitro or in vivo. Inside cells, the caged IP(3) is inert until activated by two-photon excitation at 720 nm. The photoliberated signaling molecule can mobilize release of Ca(2+) from intracellular stores on the endoplasmic reticulum. When co-loaded with the fluorescent Ca(2+) indicator rhod-2, one laser can be used for stimulating and monitoring intracellular Ca(2+) signaling with single-cell resolution. This protocol has chemistry and biology sections; the former describes the organic synthesis of the caged IP(3), which requires 12 d, and the latter an application to a day-long study of astrocyte-regulated neuronal function in living brain slices acutely isolated from rats. As Ca(2+) is the single most important intracellular second messenger and the IP(3)-Ca(2+) signaling cascade is used by many cells to produce increases in Ca(2+) concentration, this method should be widely applicable for the study of a variety of physiological processes in intact biological systems.


Assuntos
Sinalização do Cálcio , Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , Inositol 1,4,5-Trifosfato , Neurônios , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Corantes Fluorescentes , Inositol 1,4,5-Trifosfato/análogos & derivados , Inositol 1,4,5-Trifosfato/síntese química , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fotólise , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
7.
Exp Physiol ; 96(4): 393-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21257665

RESUMO

Astrocytes are the most numerous cells in the CNS. It is a defining feature of brain anatomy that every astrocyte has at least one contact with the vasculature, termed an endfoot. Collectively, all endfeet completely circumscribe all vessels in the brain. This unique anatomical feature has profound functional significance, as astrocyte endfeet have been discovered to release diffusible messengers that communicate directly with underlying smooth muscle cells to change arterial diameter and thereby regulate cerebral blood flow. A growing body of data now demonstrates that astrocytes serve as a bridge, relaying information on the level of neural activity to blood vessels in order to co-ordinate oxygen and glucose delivery with the energy demands of the tissue. In particular, astrocytes respond to elevations in extracellular glutamate as a consequence of synaptic transmission through the activation of group 1 metabotropic glutamate receptors. These Gq-coupled receptors elevate intracellular calcium via IP(3) signalling, which activates phospholipase A2 and generates arachidonic acid. Arachidonic acid acts as a signalling molecule or is converted to several lipid derivates, including prostaglandin E(2) and epoxyeicosatrienoic acids. Each of these lipids acts on vascular smooth muscle cells via different mechanisms to affect vessel diameter. Arachidonic acid initiates the production of 20-hydroxyeicosatetraenoic acid to cause vasoconstriction, whereas prostaglandin E(2) and epoxyeicosatrienoic acids cause vasodilatation. Factors that determine whether constrictor or dilatory pathways predominate involve nitric oxide and brain metabolic elements, such as oxygen, lactate and adenosine. Thus, astrocytes are thought to be capable of bidirectional control of arterial diameter, and the type of influence depends on the state of brain activity.


Assuntos
Arteríolas/fisiologia , Astrócitos/fisiologia , Animais , Arteríolas/metabolismo , Astrócitos/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Transmissão Sináptica/fisiologia
8.
Cereb Cortex ; 20(11): 2614-24, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20176688

RESUMO

Cortical spreading depression (SD) is a propagating wave of neuronal and glial depolarization that manifests in several brain disorders. However, the relative contribution of neurons and astrocytes to SD genesis has remained controversial. This is in part due to a lack of utilizing sophisticated experimental methodologies simultaneously to quantify multiple cellular parameters. To address this, we used simultaneous two-photon imaging, intrinsic optical imaging, and electrophysiological recordings to ascertain the changes in cellular processes that are fundamental to both cell types including cell volume, pH, and metabolism during SD propagation. We found that SD was correlated in neurons with robust yet transient increased volume, intracellular acidification, and mitochondrial depolarization. Our data indicated that a propagating large conductance during SD generated neuronal depolarization, which led to both calcium influx triggering metabolic changes and H(+) entry. Notably, astrocytes did not exhibit changes in cell volume, pH, or mitochondrial membrane potentials associated with SD, but they did show alterations induced by changing external [K(+)]. This suggests that astrocytes are not the primary contributor to SD propagation but are instead activated passively by extracellular potassium accumulation. These data support the hypothesis that neurons are the crucial cell type contributing to the pathophysiological responses of SD.


Assuntos
Astrócitos/fisiologia , Polaridade Celular/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Mitocôndrias/fisiologia , Neurônios/fisiologia , Animais , Astrócitos/citologia , Astrócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/patologia , Neurônios/citologia , Neurônios/patologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
9.
Neuron ; 64(3): 391-403, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19914187

RESUMO

Afferent activity can induce fast, feed-forward changes in synaptic efficacy that are synapse specific. Using combined electrophysiology, caged molecule photolysis, and Ca(2+) imaging, we describe a plasticity in which the recruitment of astrocytes in response to afferent activity causes a fast and feed-forward, yet distributed increase in the amplitude of quantal synaptic currents at multiple glutamate synapses on magnocellular neurosecretory cells in the hypothalamic paraventricular nucleus. The plasticity is largely multiplicative, consistent with a proportional increase or "scaling" in the strength of all synapses on the neuron. This effect requires a metabotropic glutamate receptor-mediated rise in Ca(2+) in the astrocyte processes surrounding the neuron and the release of the gliotransmitter ATP, which acts on postsynaptic purinergic receptors. These data provide evidence for a form of distributed synaptic plasticity that is feed-forward, expressed quickly, and mediated by the synaptic activation of neighboring astrocytes.


Assuntos
Astrócitos/fisiologia , Ácido Glutâmico/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Sinapses/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Comunicação Celular/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Sistemas Neurossecretores/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Receptores Purinérgicos/metabolismo , Potenciais Sinápticos/fisiologia , Transmissão Sináptica/fisiologia
10.
Nature ; 456(7223): 745-9, 2008 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18971930

RESUMO

Calcium signalling in astrocytes couples changes in neural activity to alterations in cerebral blood flow by eliciting vasoconstriction or vasodilation of arterioles. However, the mechanism for how these opposite astrocyte influences provide appropriate changes in vessel tone within an environment that has dynamic metabolic requirements remains unclear. Here we show that the ability of astrocytes to induce vasodilations over vasoconstrictions relies on the metabolic state of the rat brain tissue. When oxygen availability is lowered and astrocyte calcium concentration is elevated, astrocyte glycolysis and lactate release are maximized. External lactate attenuates transporter-mediated uptake from the extracellular space of prostaglandin E(2), leading to accumulation and subsequent vasodilation. In conditions of low oxygen concentration extracellular adenosine also increases, which blocks astrocyte-mediated constriction, facilitating dilation. These data reveal the role of metabolic substrates in regulating brain blood flow and provide a mechanism for differential astrocyte control over cerebrovascular diameter during different states of brain activation.


Assuntos
Arteríolas/metabolismo , Astrócitos/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Vasoconstrição/fisiologia , Vasodilatação/fisiologia , Adenosina/metabolismo , Adenosina/farmacologia , Animais , Arteríolas/efeitos dos fármacos , Dinoprostona/metabolismo , Glicólise , Ácido Láctico/metabolismo , Masculino , Transportadores de Ânions Orgânicos/metabolismo , Oxigênio/metabolismo , Pressão , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Ratos Sprague-Dawley , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
11.
Glia ; 55(12): 1214-1221, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17659528

RESUMO

The control of cerebral vessel diameter is of fundamental importance in maintaining healthy brain function because it is critical to match cerebral blood flow (CBF) to the metabolic demand of active neurons. Recent studies have shown that astrocytes are critical players in the regulation of cerebral blood vessel diameter and that there are several molecular pathways through which astrocytes can elicit these changes. Increased intracellular Ca(2+) in astrocytes has demonstrated a dichotomy in vasomotor responses by causing the constriction as well as the dilation of neighboring blood vessels. The production of arachidonic acid (AA) in astrocytes by Ca(2+) sensitive phospholipase A(2) (PLA(2)) has been shown to be common to both constriction and dilation mechanisms. Constriction results from the conversion of AA to 20-hydroxyeicosatetraenoic acid (20-HETE) and dilation from the production of prostaglandin E(2) (PGE2) or epoxyeicosatrienoic acid (EET) and the level of nitric oxide (NO) appears to dictate which of these two pathways is recruited. In addition the activation of Ca(2+) activated K(+) channels in astrocyte endfeet and the efflux of K(+) has also been suggested to modify vascular tone by hyperpolarization and relaxation of smooth muscle cells (SMCs). The wide range of putative pathways indicates that more work is needed to clarify the contributions of astrocytes to vascular dynamics under different cellular conditions. Nonetheless it is clear that astrocytes are important albeit complicated regulators of CBF.


Assuntos
Astrócitos/fisiologia , Circulação Cerebrovascular/fisiologia , Animais , Capilares/fisiologia , Humanos , Músculo Liso Vascular/fisiologia , Neurotransmissores/fisiologia , Potássio/fisiologia , Canais de Potássio/fisiologia , Vasodilatação/fisiologia
12.
J Neurophysiol ; 97(4): 2590-604, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17267759

RESUMO

The contribution of Purkinje cells to cerebellar motor coordination and learning is determined in part by the chronic and acute effects of climbing fiber (CF) afferents. Whereas the chronic effects of CF discharge, such as the depression of conjunctive parallel fiber (PF) inputs, are well established, the acute cellular functions of CF discharge remain incompletely understood. In rat cerebellar slices, we show that CF discharge presented at physiological frequencies substantially modifies the frequency and pattern of Purkinje cell spike output in vitro. Repetitive CF discharge converts a spontaneous trimodal pattern of output characteristic of Purkinje cells in vitro to a more naturalistic nonbursting pattern consisting of spike trains interrupted by short CF-evoked pauses or longer pauses associated with state transitions. All effects of CF discharge could be reproduced in the presence of synaptic blockers by using current injections to simulate complex spike depolarizations, revealing that CF-evoked changes in Purkinje cell output can occur independently of network activation. Rather postsynaptic changes are sufficient to account for the CF-evoked block of trimodal activity and include at least the activation of Ca(2+)-dependent K(+) channels. Furthermore by controlling the frequency of Purkinje cell spike output over three discrete firing levels, CF discharge modulates the gain of Purkinje cell responsiveness to PF inputs in vitro through postsynaptic mechanisms triggered by the complex spike depolarization. The ability for CF discharge to acutely modulate diverse aspects of Purkinje cell output provides important insights into the probable cellular factors contributing to motor disturbances following CF denervation.


Assuntos
Cerebelo/fisiologia , Fibras Nervosas/fisiologia , Células de Purkinje/fisiologia , Algoritmos , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Denervação , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas In Vitro , Masculino , Canais de Potássio Cálcio-Ativados/fisiologia , Ratos , Ratos Sprague-Dawley , Sódio/fisiologia , Sinapses/fisiologia
13.
J Physiol ; 576(Pt 2): 341-7, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16857715

RESUMO

Alterations in synaptic strength are thought to represent the cellular basis of learning and memory. While such processes appear to be fundamental to all synapses, until recently there has been a relative dearth of information regarding synaptic 'memory' processes in autonomic circuits. Here we examine recent advances in our understanding of plasticity at glutamatergic synapses onto magnocellular neurosecretory cells in the hypothalamus, paying particular attention to the contributions of noradrenaline in coding long-lasting pre- and postsynaptic changes in efficacy. We also highlight recent work demonstrating that glial cells play a crucial role in the induction of long-term potentiation. Based on the work reviewed here, we have a clearer picture of the synaptic and cellular mechanisms that allow autonomic pathways to learn and remember.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Homeostase/fisiologia , Potenciação de Longa Duração/fisiologia , Animais , Humanos , Hipotálamo/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Transmissão Sináptica/fisiologia
14.
J Neurosci ; 25(49): 11385-95, 2005 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-16339033

RESUMO

The origin of large-amplitude miniature EPSCs (mEPSCs) at central synapses remains to be firmly established. Here, we show that at excitatory synapses onto magnocellular neurosecretory cells in the hypothalamus, noradrenaline induces a rapid and robust increase in mEPSC amplitude that requires alpha1-adrenoceptor activation but is impervious to postsynaptic manipulations that block the putative insertion of AMPA receptors. In response to noradrenaline, mEPSCs exhibit a putative multimodal amplitude histogram distribution that is not attributable to random temporal summation, the unveiling of a quiescent synapse, or the release of large vesicles. Large-amplitude mEPSCs are sensitive to a high dose of ryanodine and are associated with an enhanced glutamate cleft concentration. Together, these data are consistent with the hypothesis that large-amplitude mEPSCs result from the synchronous release of multiple vesicles via rapid presynaptic calcium expulsion from intracellular stores.


Assuntos
Ácido Glutâmico/metabolismo , Hipotálamo/metabolismo , Norepinefrina/farmacologia , Norepinefrina/fisiologia , Receptores de AMPA/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipotálamo/efeitos dos fármacos , Técnicas In Vitro , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/agonistas , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Vesículas Sinápticas/efeitos dos fármacos
15.
Nat Neurosci ; 8(8): 1078-86, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15995701

RESUMO

Glial cells actively participate in synaptic transmission. They clear molecules from the synaptic cleft, receive signals from neurons and, in turn, release molecules that can modulate signaling between neuronal elements. Whether glial-derived transmitters can contribute to enduring changes in postsynaptic efficacy, however, remains to be established. In rat hypothalamic paraventricular nucleus, we demonstrate an increase in the amplitude of miniature excitatory postsynaptic currents in response to norepinephrine that requires the release of ATP from glial cells. The increase in quantal efficacy, which likely results from an insertion of AMPA receptors, is secondary to the activation of P2X(7) receptors, an increase in postsynaptic calcium and the activation of phosphatidylinositol 3-kinase. The gliotransmitter ATP, therefore, contributes directly to the regulation of postsynaptic efficacy at glutamatergic synapses in the CNS.


Assuntos
Trifosfato de Adenosina/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Norepinefrina/farmacologia , Sinapses/fisiologia , Animais , Biomarcadores/metabolismo , Cálcio/metabolismo , Ativação Enzimática , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas In Vitro , Masculino , Neuroglia/fisiologia , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X7 , Sinapses/metabolismo , Distribuição Tecidual
16.
J Neurosci ; 23(15): 6223-31, 2003 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-12867506

RESUMO

Adaptive responses mediated by the hypothalamus require sustained activation until homeostasis is achieved. Increases in excitatory drive to the magnocellular neuroendocrine cells that mediate these responses, however, result in the activation of a presynaptic metabotropic glutamate receptor (mGluR) that curtails synaptic excitability. Recent evidence that group III mGluRs can be inhibited by protein kinase C prompted us to test the hypothesis that activation of PKC by noradrenaline (NA) inhibits group III mGluRs and increases excitatory synaptic input to these cells. To examine the effects of NA on miniature EPSCs (mEPSCs), we obtained whole-cell recordings from magnocellular vasopressin and oxytocin neurons in the paraventricular nucleus of the hypothalamus. All of the neurons tested in the current study displayed an alpha1 adrenoceptor-mediated increase in mEPSC frequency in response to NA (1-200 microm). The excitatory effects of NA were mimicked by the phorbol ester PMA and blocked by the PKC inhibitor calphostin C. The activation of PKC inhibits the efficacy of group III mGluRs, resulting in an increase in mEPSC frequency in response to a subsequent exposure to NA. By removing feedback inhibition, this mechanism effectively primes the synapses such that subsequent activation is more efficacious. The novel form of synaptic rescaling afforded by this cross-talk between distinct metabotropic receptors provides a means by which ascending catecholamine inputs can facilitate the control of homeostasis by hypothalamic networks.


Assuntos
Receptores Adrenérgicos alfa 1/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Sinapses/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Retroalimentação Fisiológica/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Ácido Glutâmico/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiologia , Técnicas In Vitro , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Norepinefrina/farmacologia , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiologia , Técnicas de Patch-Clamp , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Cross-Talk/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...