Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 45(9): 5577-5585, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28334829

RESUMO

Transcription-export complex 2 (TREX-2, or THSC) facilitates localization of actively transcribing genes such as GAL1 to the nuclear periphery, contributes to the generation of export-competent mRNPs and influences gene expression through interactions with Mediator. TREX-2 is based on a Sac3 scaffold to which Thp1, Sem1, Cdc31 and Sus1 bind and consists of three modules: the N-region (Sac3∼1-100), which binds mRNA export factor Mex67:Mtr2; the M-region, in which Thp1 and Sem1 bind to Sac3∼100-550; and the CID region in which Cdc31 and two Sus1 chains bind to Sac3∼720-805. Although the M-region of Sac3 was originally thought to encompass residues ∼250-550, we report here the 2.3Å resolution crystal structure of a complex containing Sac3 residues 60-550 that indicates that the TPR-like repeats of the M-region extend to residue 137 and that residues 90-125 form a novel loop that links Sac3 to Thp1. These new structural elements are important for growth and mRNA export in vivo. Although deleting Sac3 residues 1-90 produced a wild-type phenotype, deletion of the loop as well generated growth defects at 37°C, whereas the deletion of residues 1-250 impaired mRNA export and also generated longer lag times when glucose or raffinose was replaced by galactose as the carbon source.


Assuntos
Complexos Multiproteicos/metabolismo , RNA Fúngico/química , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química
2.
Nucleic Acids Res ; 45(3): 1529-1538, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28180315

RESUMO

In Saccharomyces cerevisiae generation of export-competent mRNPs terminates the nuclear phase of the gene expression pathway and facilitates transport to the cytoplasm for translation. Nab2 functions in this process to control both mRNP compaction that facilitates movement through nuclear pore complexes and the length of transcript poly(A) tails. Nab2 has a modular structure that includes seven CCCH Zn fingers that bind to A-rich RNAs and fingers 5­7 are critical for these functions. Here, we demonstrate, using both biophysical and structural methods, that binding A11G RNA induces dimerization of Zn fingers 5­7 mediated by the novel spatial arrangement of the fingers promoting each RNA chain binding two protein chains. The dimerization of Nab2 induced by RNA binding provides a basis for understanding its function in both poly(A) tail length regulation and in the compaction of mature transcripts to facilitate nuclear export.


Assuntos
Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Substituição de Aminoácidos , Sequência de Bases , Fenômenos Biofísicos , Cristalografia por Raios X , Galactoquinase/genética , Genes Fúngicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas de Transporte Nucleocitoplasmático/genética , Poliadenilação , Domínios Proteicos , Multimerização Proteica , RNA Fúngico/química , RNA Fúngico/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Dedos de Zinco
3.
Nucleic Acids Res ; 42(15): 10185-95, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25081215

RESUMO

Cytoplasmic polyadenylation is regulated by the interaction of the cytoplasmic polyadenylation element binding proteins (CPEB) with cytoplasmic polyadenylation element (CPE) containing mRNAs. The CPEB family comprises four paralogs, CPEB1-4, each composed of a variable N-terminal region, two RNA recognition motif (RRM) and a C-terminal ZZ-domain. We have characterized the RRM domains of CPEB4 and their binding properties using a combination of biochemical, biophysical and NMR techniques. Isothermal titration calorimetry, NMR and electrophoretic mobility shift assay experiments demonstrate that both the RRM domains are required for an optimal CPE interaction and the presence of either one or two adenosines in the two most commonly used consensus CPE motifs has little effect on the affinity of the interaction. Both the single RRM1 and the tandem RRM1-RRM2 have the ability to dimerize, although representing a minor population. Self-association does not affect the proteins' ability to interact with RNA as demonstrated by ion mobility-mass spectrometry. Chemical shift effects measured by NMR of the apo forms of the RRM1-RRM2 samples indicate that the two domains are orientated toward each other. NMR titration experiments show that residues on the ß-sheet surface on RRM1 and at the C-terminus of RRM2 are affected upon RNA binding. We propose a model of the CPEB4 RRM1-RRM2-CPE complex that illustrates the experimental data.


Assuntos
Proteínas de Ligação a RNA/química , RNA/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Motivos de Nucleotídeos , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , RNA/química , Proteínas de Ligação a RNA/metabolismo
4.
Nucleic Acids Res ; 42(9): 5742-54, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24598255

RESUMO

Ribonucleic acid (RNA)-binding proteins are key players of gene expression control. We have shown that Gemin5 interacts with internal ribosome entry site (IRES) elements and modulates initiation of translation. However, little is known about the RNA-binding sites of this protein. Here we show that the C-terminal region of Gemin5 bears two non-canonical bipartite RNA-binding sites, encompassing amino acids 1297-1412 (RBS1) and 1383-1508 (RBS2). While RBS1 exhibits greater affinity for RNA than RBS2, it does not affect IRES-dependent translation in G5-depleted cells. In solution, the RBS1 three-dimensional structure behaves as an ensemble of flexible conformations rather than having a defined tertiary structure. However, expression of the polypeptide G51383-1508, bearing the low RNA-binding affinity RBS2, repressed IRES-dependent translation. A comparison of the RNA-binding capacity and translation control properties of constructs expressed in mammalian cells to that of the Gemin5 proteolysis products observed in infected cells reveals that non-repressive products accumulated during infection while the repressor polypeptide is not stable. Taken together, our results define the low affinity RNA-binding site as the minimal element of the protein being able to repress internal initiation of translation.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Ribonucleoproteínas Nucleares Pequenas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Vírus da Febre Aftosa/genética , Inativação Gênica , Células HEK293 , Humanos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteólise , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Viral/química , RNA Viral/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN
5.
Nucleic Acids Res ; 40(3): 1214-25, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21993299

RESUMO

Polyadenylation of eukaryotic mRNAs contributes to stability, transport and translation, and is catalyzed by a large complex of conserved proteins. The Pcf11 subunit of the yeast CF IA factor functions as a scaffold for the processing machinery during the termination and polyadenylation of transcripts. Its partner, Clp1, is needed for mRNA processing, but its precise molecular role has remained enigmatic. We show that Clp1 interacts with the Cleavage-Polyadenylation Factor (CPF) through its N-terminal and central domains, and thus provides cross-factor connections within the processing complex. Clp1 is known to bind ATP, consistent with the reported RNA kinase activity of human Clp1. However, substitution of conserved amino acids in the ATP-binding site did not affect cell growth, suggesting that the essential function of yeast Clp1 does not involve ATP hydrolysis. Surprisingly, non-viable mutations predicted to displace ATP did not affect ATP binding but disturbed the Clp1-Pcf11 interaction. In support of the importance of this interaction, a mutation in Pcf11 that disrupts the Clp1 contact caused defects in growth, 3'-end processing and transcription termination. These results define Clp1 as a bridge between CF IA and CPF and indicate that the Clp1-Pcf11 interaction is modulated by amino acids in the conserved ATP-binding site of Clp1.


Assuntos
Trifosfato de Adenosina/metabolismo , Processamento de Terminações 3' de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Mutação , Fenótipo , Poliadenilação , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/genética
6.
Biochemistry ; 50(47): 10203-14, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22026644

RESUMO

Yeast cleavage factor I (CF I) is an essential complex of five proteins that binds signal sequences at the 3' end of yeast mRNA. CF I is required for correct positioning of a larger protein complex, CPF, which contains the catalytic subunits executing mRNA cleavage and polyadenylation. CF I is composed of two parts, CF IA and Hrp1. The CF IA has only four subunits, Rna14, Rna15, Pcf11, and Clp1, but the structural organization has not been fully established. Using biochemical and biophysical methods, we demonstrate that CF IA can be reconstituted from bacterially expressed proteins and that it has 2:2:1:1 stoichiometry of its four proteins, respectively. We also describe mutations that disrupt the dimer interface of Rna14 while preserving the other subunit interactions. On the basis of our results and existing interaction data, we present a topological model for heterohexameric CF IA and its association with RNA and Hrp1.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Fatores de Poliadenilação e Clivagem de mRNA/química , Expressão Gênica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
7.
Nucleic Acids Res ; 35(19): 6439-50, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17881380

RESUMO

Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.


Assuntos
Endorribonucleases/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Endorribonucleases/isolamento & purificação , Humanos , Mapeamento de Interação de Proteínas , Subunidades Proteicas/isolamento & purificação , Precursores de RNA/metabolismo , RNA Fúngico/metabolismo , RNA Ribossômico/metabolismo , Ribonuclease P/metabolismo , Ribonucleoproteínas/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...