Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 52(7): 3547-55, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23485079

RESUMO

Hexavalent neptunium can be solubilized in 0.5-3.5 M aqueous MOH (M = Li(+), Na(+), NMe4(+) = TMA(+)) solutions. Single crystals were obtained from cooling of a dilute solution of Co(NH3)6Cl3 and NpO2(2+) in 3.5 M [N(Me)4]OH to 5 °C. A single-crystal X-ray diffraction study revealed the molecular formula of [Co(NH3)6]2[NpO2(OH)4]3·H2O, isostructural with the uranium analogue. The asymmetric unit contains three distinct NpO2(OH)4(2-) ions, each with pseudooctahedral coordination geometry with trans-oxo ligands. The average Np═O and Np-OH distances were determined to be 1.80(1) and 2.24(1) Å, respectively. EXAFS data and fits at the Np L(III)-edge on solid [Co(NH3)6]2[NpO2(OH)4]3·H2O and aqueous solutions of NpO2(2+) in 2.5 and 3.5 M (TMA)OH revealed bond lengths nearly identical with those determined by X-ray diffraction but with an increase in the number of equatorial ligands with increasing (TMA)OH concentration. Raman spectra of single crystals of [Co(NH3)6]2[NpO2(OH)4]3·H2O reveal a ν1(O═Np═O) symmetric stretch at 741 cm(-1). Raman spectra of NpO2(2+) recorded in a 0.6-2.2 M LiOH solution reveal a single ν1 frequency of 769 cm(-1). Facile exchange of the neptunyl oxo ligands with the water solvent was also observed with Raman spectroscopy performed with (16)O- and (18)O-enriched water solvent. The combination of EXAFS and Raman data suggests that NpO2(OH)4(2-) is the dominant solution species under the conditions of study and that a small amount of a second species, NpO2(OH)5(3-), may also be present at higher alkalinity. Crystal data for [Co(NH3)6]2[NpO2(OH)4]3·H2O: monoclinic, space group C2/c, a = 17.344(4) Å, b = 12.177(3) Å, c = 15.273 Å, ß = 120.17(2)°, Z = 4, R1 = 0.0359, wR2 = 0.0729.

2.
J Am Chem Soc ; 126(41): 13443-58, 2004 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-15479101

RESUMO

Pu L(3) X-ray absorption fine structure spectra from 24 samples of PuO(2+x) (and two related Pu-substituted oxides), prepared by a variety of methods, demonstrate that (1) although the Pu sublattice remains the ordered part of the Pu distribution, the nearest-neighbor O atoms even at x = 0 are found in a multisite distribution with Pu-O distances consistent with the stable incorporation of OH(-) (and possibly H(2)O and H(+)) into the PuO(2) lattice; (2) the excess O from oxidation is found at Pu-O distances <1.9 A, consistent with the multiply bound "oxo"-type ligands found in molecular complexes of Pu(V) and Pu(VI); (3) the Pu associated with these oxo groups is most likely Pu(V), so that the excess O probably occurs as PuO(2)(+) moieties that are aperiodically distributed through the lattice; and (4) the collective interactions between these defect sites most likely cause them to cluster so as give nanoscale heterogeneity in the form of domains that may have unusual reactivity, observed as sequential oxidation by H(2)O at ambient conditions. The most accurate description of PuO(2) is therefore actually PuO(2+x-y)(OH)(2)(y).zH(2)O, with pure, ordered, homogeneous PuO(2) attained only when H(2)O is rigorously excluded and the O activity is relatively low.

3.
Inorg Chem ; 43(1): 116-31, 2004 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-14704059

RESUMO

Pu L(3) X-ray near edge absorption spectra for Pu(0-VII) are reported for more than 60 chalcogenides, chlorides, hydrates, hydroxides, nitrates, carbonates, oxy-hydroxides, and other compounds both as solids and in solution, and substituted in zirconolite, perovskite, and borosilicate glass. This large database extends the known correlations between the energy and shape of these spectra from the usual association of the XANES with valence and site symmetry to higher order chemical effects. Because of the large number of compounds of these different types, a number of novel and unexpected behaviors are observed, such as effects resulting from the medium and disorder that can be as large as those from valence.

4.
Inorg Chem ; 42(12): 3715-7, 2003 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-12793805

RESUMO

Pu L(3) XAFS measurements show that the excess oxygen in single phase PuO(2+)(x)() occurs as oxo groups with Pu-O distances of 1.83-1.91 A. This distance and the energy of the edge (via comparison with a large number of related compounds) are more consistent with a Pu(IV/V) than a Pu(IV/VI) mixture. Analogous to Pu(IV) colloids, although the Pu-Pu pair distribution remains single site even when it shows substantial disorder, the Pu-O distribution can display a number of additional shells at specific distances up to 3.4 A even in high fired materials when no oxo groups are present, implying intrinsic H(+)/OH(-)(/H(2)O). The number of oxo atoms increases when samples are equilibrated with humid air at ambient temperature, indicating that the Pu reactivity in this solid system differs notably from that of isolated complexes and demonstrating the importance of nanoscale cooperative phenomena and total free energy in determining its chemical properties.

5.
J Am Chem Soc ; 124(7): 1327-33, 2002 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-11841302

RESUMO

The first quaternary plutonium metal thiophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: K(3)Pu(PS(4))(2) (I), KPuP(2)S(7) (II), RbPuP(2)S(7) (III), and CsPuP(2)S(7) (IV). All four compounds crystallize in the monoclinic space group P2(1)/c with Z = 4. Compound I has cell parameters of a = 9.157(1) A, b = 16.866(2) A, c = 9.538(1), and beta = 90.610(3)degrees. Compound II has cell parameters of a = 9.641(1) A, b = 12.255(1) A, c = 9.015(1) A, and beta = 90.218(1)degrees. Compound III has cell parameters of a = 9.8011(6) A, b = 12.3977(7) A, c = 9.0263(5) A, and beta = 90.564(1)degrees. Compound IV has cell parameters of a = 10.1034(7) A, b = 12.5412(9) A, c = 9.0306(6) A, and beta = 91.007(1)degrees. Compound I is isostructural to a family of rare-earth metal thiophosphates and comprises bicapped trigonal prismatic PuS(8) polyhedra linked in chains through edge-sharing interactions and through thiophosphate tetrahedra. Compounds II-IV crystallize in a known structure type not related to any previously observed actinide thiophosphates and contain the (P(2)S(7))(4-) corner-shared bitetrahedral ligand as a structural building block. A summary of important bond distances and angles for these new plutonium thiophosphate materials is compared to the limited literature on plutonium solid-state compounds. Diffuse reflectance spectra confirm the Pu(III) oxidation state and Raman spectroscopy confirms the tetrahedral PS(4)(3-) building block in all structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...