Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38194294

RESUMO

Patients with chronic inflammatory disorders such as psoriasis have an increased risk of cardiovascular disease and elevated levels of LL37, a cathelicidin host defense peptide that has both antimicrobial and proinflammatory properties. To explore whether LL37 could contribute to the risk of heart disease, we examined its effects on lipoprotein metabolism and show that LL37 enhanced LDL uptake in macrophages through the LDL receptor (LDLR), scavenger receptor class B member 1 (SR-B1), and CD36. This interaction led to increased cytosolic cholesterol in macrophages and changes in expression of lipid metabolism genes consistent with increased cholesterol uptake. Structure-function analysis and synchrotron small-angle x-ray scattering showed structural determinants of the LL37-LDL complex that underlie its ability to bind its receptors and promote uptake. This function of LDL uptake is unique to cathelicidins from humans and some primates and was not observed with cathelicidins from mice or rabbits. Notably, Apoe-/- mice expressing LL37 developed larger atheroma plaques than did control mice, and a positive correlation between plasma LL37 and oxidized phospholipid on apolipoprotein B (OxPL-apoB) levels was observed in individuals with cardiovascular disease. These findings provide evidence that LDL uptake can be increased via interaction with LL37 and may explain the increased risk of cardiovascular disease associated with chronic inflammatory disorders.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Psoríase , Animais , Humanos , Camundongos , Coelhos , Colesterol , Camundongos Knockout para ApoE
2.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045410

RESUMO

Macrophages detect invading microorganisms via pattern recognition receptors that recognize pathogen-associated molecular patterns, or via sensing the activity of virulence factors that initiates effector-triggered immunity (ETI). Tissue damage that follows pathogen encounter leads to the release of host-derived factors that participate to inflammation. How these self-derived molecules are sensed by macrophages and their impact on immunity remain poorly understood. Here we demonstrate that, in mice and humans, host-derived oxidized phospholipids (oxPLs) are formed upon microbial encounter. oxPL blockade restricts inflammation and prevents the death of the host, without affecting pathogen burden. Mechanistically, oxPLs bind and inhibit AKT, a master regulator of immunity and metabolism. AKT inhibition potentiates the methionine cycle, and epigenetically dampens Il10, a pluripotent anti-inflammatory cytokine. Overall, we found that host-derived inflammatory cues act as "self" virulence factors that initiate ETI and that their activity can be targeted to protect the host against excessive inflammation upon microbial encounter.

3.
JCI Insight ; 7(13)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35653195

RESUMO

Apolipoprotein C-III (apoC-III) is a critical regulator of triglyceride metabolism and correlates positively with hypertriglyceridemia and cardiovascular disease (CVD). It remains unclear if therapeutic apoC-III lowering reduces CVD risk and if the CVD correlation depends on the lipid-lowering or antiinflammatory properties. We determined the impact of interventional apoC-III lowering on atherogenesis using an apoC-III antisense oligonucleotide (ASO) in 2 hypertriglyceridemic mouse models where the intervention lowers plasma triglycerides and in a third lipid-refractory model. On a high-cholesterol Western diet apoC-III ASO treatment did not alter atherosclerotic lesion size but did attenuate advanced and unstable plaque development in the triglyceride-responsive mouse models. No lesion size or composition improvement was observed with apoC-III ASO in the lipid-refractory mice. To circumvent confounding effects of continuous high-cholesterol feeding, we tested the impact of interventional apoC-III lowering when switching to a cholesterol-poor diet after 12 weeks of Western diet. In this diet switch regimen, apoC-III ASO treatment significantly reduced plasma triglycerides, atherosclerotic lesion progression, and necrotic core area and increased fibrous cap thickness in lipid-responsive mice. Again, apoC-III ASO treatment did not alter triglyceride levels, lesion development, and lesion composition in lipid-refractory mice after the diet switch. Our findings suggest that interventional apoC-III lowering might be an effective strategy to reduce atherosclerosis lesion size and improve plaque stability when lipid lowering is achieved.


Assuntos
Aterosclerose , Hiperlipidemias , Placa Aterosclerótica , Animais , Apolipoproteína C-III , Proteínas de Transporte , Colesterol , Camundongos , Oligonucleotídeos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Triglicerídeos/metabolismo
4.
JCI Insight ; 5(23)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33119548

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) affects cholesterol homeostasis by targeting hepatic LDL receptor (LDLR) for lysosomal degradation. Clinically, PCSK9 inhibitors effectively reduce LDL-cholesterol (LDL-C) levels and the incidence of cardiovascular events. Because microRNAs (miRs) are integral regulators of cholesterol homeostasis, we investigated the involvement of miR-483 in regulating LDL-C metabolism. Using in silico analysis, we predicted that miR-483-5p targets the 3'-UTR of PCSK9 mRNA. In HepG2 cells, miR-483-5p targeted the PCSK9 3'-UTR, leading to decreased PCSK9 protein and mRNA expression, increased LDLR expression, and enhanced LDL-C uptake. In hyperlipidemic mice and humans, serum levels of total cholesterol and LDL-C were inversely correlated with miR-483-5p levels. In mice, hepatic miR-483 overexpression increased LDLR levels by targeting Pcsk9, with a significant reduction in plasma total cholesterol and LDL-C levels. Mechanistically, the cholesterol-lowering effect of miR-483-5p was significant in mice receiving AAV8 PCSK9-3'-UTR but not Ldlr-knockout mice or mice receiving AAV8 PCSK9-3'-UTR (ΔBS) with the miR-483-5p targeting site deleted. Thus, exogenously administered miR-483 or similarly optimized compounds have potential to ameliorate hypercholesterolemia.


Assuntos
Hipercolesterolemia/genética , MicroRNAs/genética , Pró-Proteína Convertase 9/genética , Animais , Aterosclerose/metabolismo , Colesterol/genética , Colesterol/metabolismo , LDL-Colesterol/genética , LDL-Colesterol/metabolismo , Feminino , Células Hep G2 , Humanos , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertases/genética , Receptores de LDL/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...