Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Future Med Chem ; 14(14): 1049-1070, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35707942

RESUMO

Aim: This study reports the designing of BChE inhibitors through machine learning (ML), followed by in silico and in vitro evaluations. Methodology: ML technique was used to predict the virtual hit, and its derivatives were synthesized and characterized. The compounds were evaluated by using various in vitro tests and in silico methods. Results: The gradient boosting classifier predicted N-phenyl-4-(phenylsulfonamido) benzamide as an active BChE inhibitor. The derivatives of the inhibitor, i.e., compounds 34, 37 and 54 were potent BChE inhibitors and displayed blood-brain barrier permeability with no significant AChE inhibition. Conclusion: The ML prediction was effective, and the synthesized compounds showed the BChE inhibitory activity, which was also supported by the in silico studies.


Assuntos
Butirilcolinesterase , Inibidores da Colinesterase , Inibidores da Colinesterase/farmacologia , Aprendizado de Máquina , Sulfonamidas/farmacologia
2.
Int J Biol Macromol ; 203: 195-211, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35090939

RESUMO

Butyrylcholinesterase (BChE), a hydrolytic enzyme, is responsible for the termination of the action of acetylcholine besides acetylcholinesterase (AChE) in the synaptic cleft of the brain. The alteration in the enzyme level, in patients with the progression of Alzheimer's disease, makes it a therapeutic target. In the present study, we developed BChE inhibitors through scaffold hopping by exploring two previously reported compounds, i.e., 1,4-bis((4-chlorophenyl) sulfonyl)-3,6-diphenylpiperazine-2,5-dione and N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide, to afford scaffold and pharmacophore fragments, respectively. The N,2-diphenyl-2-(phenylsulfonamido)acetamide derivatives, thus designed, were synthesised and screened for the inhibition of AChE and BChE enzymes. Compounds 30 and 33 were found to be most active against BChE among the derivatives, with IC50 values of 7.331 ± 0.946 and 10.964 ± 0.936 µM, respectively. The compounds displayed a non-competitive mode of inhibition along with BBB permeability and good cell viability on SH-SY5Y cell line. The molecular docking analysis of the compounds with BChE showed interactions with Trp82, Trp231, Leu286, and His438. The molecular dynamics study revealed the stability of the protein-ligand complexes.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...