Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922801

RESUMO

Quantitative and qualitative running gait analysis allows the early identification and the longitudinal monitoring of gait abnormalities linked to running-related injuries. A promising calibration- and marker-less video sensor-based technology (i.e., Graal), recently validated for walking gait, may also offer a time- and cost-efficient alternative to the gold-standard methods for running. This study aim was to ascertain the validity of an improved version of Graal for quantitative and qualitative analysis of running. In 33 healthy recreational runners (mean age 41 years), treadmill running at self-selected submaximal speed was simultaneously evaluated by a validated photosensor system (i.e., Optogait-the reference methodology) and by the video analysis of a posterior 30-fps video of the runner through the optimized version of Graal. Graal is video analysis software that provides a spectral analysis of the brightness over time for each pixel of the video, in order to identify its frequency contents. The two main frequencies of variation of the pixel's brightness (i.e., F1 and F2) correspond to the two most important frequencies of gait (i.e., stride frequency and cadence). The Optogait system recorded step length, cadence, and its variability (vCAD, a traditional index of gait quality). Graal provided a direct measurement of F2 (reflecting cadence), an indirect measure of step length, and two indexes of global gait quality (harmony and synchrony index). The correspondence between quantitative indexes (Cadence vs. F2 and step length vs. Graal step length) was tested via paired t-test, correlations, and Bland-Altman plots. The relationship between qualitative indexes (vCAD vs. Harmony and Synchrony Index) was investigated by correlation analysis. Cadence and step length were, respectively, not significantly different from and highly correlated with F2 (1.41 Hz ± 0.09 Hz vs. 1.42 Hz ± 0.08 Hz, p = 0.25, r2 = 0.81) and Graal step length (104.70 cm ± 013.27 cm vs. 107.56 cm ± 13.67 cm, p = 0.55, r2 = 0.98). Bland-Altman tests confirmed a non-significant bias and small imprecision between methods for both parameters. The vCAD was 1.84% ± 0.66%, and it was significantly correlated with neither the Harmony nor the Synchrony Index (0.21 ± 0.03, p = 0.92, r2 = 0.00038; 0.21 ± 0.96, p = 0.87, r2 = 0.00122). These findings confirm the validity of the optimized version of Graal for the measurement of quantitative indexes of gait. Hence, Graal constitutes an extremely time- and cost-efficient tool suitable for quantitative analysis of running. However, its validity for qualitative running gait analysis remains inconclusive and will require further evaluation in a wider range of absolute and relative running intensities in different individuals.


Assuntos
Análise da Marcha , Corrida , Adulto , Fenômenos Biomecânicos , Teste de Esforço , Marcha , Humanos , Caminhada
2.
Sensors (Basel) ; 20(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233799

RESUMO

Gait abnormalities such as high stride and step frequency/cadence (SF-stride/second, CAD-step/second), stride variability (SV) and low harmony may increase the risk of injuries and be a sentinel of medical conditions. This research aims to present a new markerless video-based technology for quantitative and qualitative gait analysis. 86 healthy individuals (mead age 32 years) performed a 90 s test on treadmill at self-selected walking speed. We measured SF and CAD by a photoelectric sensors system; then, we calculated average ± standard deviation (SD) and within-subject coefficient of variation (CV) of SF as an index of SV. We also recorded a 60 fps video of the patient. With a custom-designed web-based video analysis software, we performed a spectral analysis of the brightness over time for each pixel of the image, that reinstituted the frequency contents of the videos. The two main frequency contents (F1 and F2) from this analysis should reflect the forcing/dominant variables, i.e., SF and CAD. Then, a harmony index (HI) was calculated, that should reflect the proportion of the pixels of the image that move consistently with F1 or its supraharmonics. The higher the HI value, the less variable the gait. The correspondence SF-F1 and CAD-F2 was evaluated with both paired t-Test and correlation and the relationship between SV and HI with correlation. SF and CAD were not significantly different from and highly correlated with F1 (0.893 ± 0.080 Hz vs. 0.895 ± 0.084 Hz, p < 0.001, r2 = 0.99) and F2 (1.787 ± 0.163 Hz vs. 1.791 ± 0.165 Hz, p < 0.001, r2 = 0.97). The SV was 1.84% ± 0.66% and it was significantly and moderately correlated with HI (0.082 ± 0.028, p < 0.001, r2 = 0.13). The innovative video-based technique of global, markerless gait analysis proposed in our study accurately identifies the main frequency contents and the variability of gait in healthy individuals, thus providing a time-efficient, low-cost means to quantitatively and qualitatively study human locomotion.


Assuntos
Análise da Marcha , Gravação em Vídeo , Velocidade de Caminhada , Adulto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...