Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 8: 479, 2015 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-26409790

RESUMO

BACKGROUND: For decades there has been increasing interest in understanding the relationships between microbial communities and ecosystem functions. Current DNA sequencing technologies allows for the exploration of microbial communities in two principle ways: targeted rRNA gene surveys and shotgun metagenomics. For large study designs, it is often still prohibitively expensive to sequence metagenomes at both the breadth and depth necessary to statistically capture the true functional diversity of a community. Although rRNA gene surveys provide no direct evidence of function, they do provide a reasonable estimation of microbial diversity, while being a very cost-effective way to screen samples of interest for later shotgun metagenomic analyses. However, there is a great deal of 16S rRNA gene survey data currently available from diverse environments, and thus a need for tools to infer functional composition of environmental samples based on 16S rRNA gene survey data. RESULTS: We present a computational method called pangenome-based functional profiles (PanFP), which infers functional profiles of microbial communities from 16S rRNA gene survey data for Bacteria and Archaea. PanFP is based on pangenome reconstruction of a 16S rRNA gene operational taxonomic unit (OTU) from known genes and genomes pooled from the OTU's taxonomic lineage. From this lineage, we derive an OTU functional profile by weighting a pangenome's functional profile with the OTUs abundance observed in a given sample. We validated our method by comparing PanFP to the functional profiles obtained from the direct shotgun metagenomic measurement of 65 diverse communities via Spearman correlation coefficients. These correlations improved with increasing sequencing depth, within the range of 0.8-0.9 for the most deeply sequenced Human Microbiome Project mock community samples. PanFP is very similar in performance to another recently released tool, PICRUSt, for almost all of survey data analysed here. But, our method is unique in that any OTU building method can be used, as opposed to being limited to closed-reference OTU picking strategies against specific reference sequence databases. CONCLUSIONS: We developed an automated computational method, which derives an inferred functional profile based on the 16S rRNA gene surveys of microbial communities. The inferred functional profile provides a cost effective way to study complex ecosystems through predicted comparative functional metagenomes and metadata analysis. All PanFP source code and additional documentation are freely available online at GitHub ( https://github.com/srjun/PanFP ).


Assuntos
Algoritmos , Bactérias/genética , Metagenoma/genética , Metagenômica/métodos , Análise de Sequência de DNA , Estatísticas não Paramétricas
2.
BMC Bioinformatics ; 9: 234, 2008 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-18474114

RESUMO

BACKGROUND: Protein-protein interactions are ubiquitous and essential for all cellular processes. High-resolution X-ray crystallographic structures of protein complexes can reveal the details of their function and provide a basis for many computational and experimental approaches. Differentiation between biological and non-biological contacts and reconstruction of the intact complex is a challenging computational problem. A successful solution can provide additional insights into the fundamental principles of biological recognition and reduce errors in many algorithms and databases utilizing interaction information extracted from the Protein Data Bank (PDB). RESULTS: We have developed a method for identifying protein complexes in the PDB X-ray structures by a four step procedure: (1) comprehensively collecting all protein-protein interfaces; (2) clustering similar protein-protein interfaces together; (3) estimating the probability that each cluster is relevant based on a diverse set of properties; and (4) combining these scores for each PDB entry in order to predict the complex structure. The resulting clusters of biologically relevant interfaces provide a reliable catalog of evolutionary conserved protein-protein interactions. These interfaces, as well as the predicted protein complexes, are available from the Protein Interface Server (PInS) website (see Availability and requirements section). CONCLUSION: Our method demonstrates an almost two-fold reduction of the annotation error rate as evaluated on a large benchmark set of complexes validated from the literature. We also estimate relative contributions of each interface property to the accurate discrimination of biologically relevant interfaces and discuss possible directions for further improving the prediction method.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados de Proteínas/estatística & dados numéricos , Complexos Multiproteicos/análise , Complexos Multiproteicos/ultraestrutura , Mapeamento de Interação de Proteínas/métodos , Algoritmos , Sequência de Aminoácidos , Sítios de Ligação , Análise por Conglomerados , Sequência Consenso , Cristalografia por Raios X , Evolução Molecular , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteômica/métodos , Reprodutibilidade dos Testes , Análise de Sequência de Proteína , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
3.
Artigo em Inglês | MEDLINE | ID: mdl-19642281

RESUMO

With some simplifications, computational protein folding can be understood as an optimization problem of a potential energy function on a variable space consisting of all conformation for a given protein molecule. It is well known that realistic energy potentials are very "rough" functions, when expressed in the standard variables, and the folding trajectories can be easily trapped in multiple local minima. We have integrated our variation of Parallel Tempering optimization into the protein folding program Rosetta in order to improve its capability to overcome energy barriers and estimate how such improvement will influence the quality of the folded protein domains. Here we report that (1) Parallel Tempering Rosetta (PTR) is significantly better in the exploration of protein structures than previous implementations of the program; (2) systematic improvements are observed across a large benchmark set in the parameters that are normally followed to estimate robustness of the folding; (3) these improvements are most dramatic in the subset of the shortest domains, where high-quality structures have been obtained for >75% of all tested sequences. Further analysis of the results will improve our understanding of protein conformational space and lead to new improvements in the protein folding methodology, while the current PTR implementation should be very efficient for short (up to approximately 80 a.a.) protein domains and therefore may find practical application in system biology studies.


Assuntos
Modelos Químicos , Modelos Moleculares , Proteínas/química , Proteínas/ultraestrutura , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína
4.
Proteins ; 68(2): 488-502, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17444516

RESUMO

Computational prediction of protein complex structures through docking offers a means to gain a mechanistic understanding of protein interactions that mediate biological processes. This is particularly important as the number of experimentally determined structures of isolated proteins exceeds the number of structures of complexes. A comprehensive docking procedure is described in which efficient sampling of conformations is achieved by matching surface normal vectors, fast filtering for shape complementarity, clustering by RMSD, and scoring the docked conformations using a supervised machine learning approach. Contacting residue pair frequencies, residue propensities, evolutionary conservation, and shape complementarity score for each docking conformation are used as input data to a Random Forest classifier. The performance of the Random Forest approach for selecting correctly docked conformations was assessed by cross-validation using a nonredundant benchmark set of X-ray structures for 93 heterodimer and 733 homodimer complexes. The single highest rank docking solution was the correct (near-native) structure for slightly more than one third of the complexes. Furthermore, the fraction of highly ranked correct structures was significantly higher than the overall fraction of correct structures, for almost all complexes. A detailed analysis of the difficult to predict complexes revealed that the majority of the homodimer cases were explained by incorrect oligomeric state annotation. Evolutionary conservation and shape complementarity score as well as both underrepresented and overrepresented residue types and residue pairs were found to make the largest contributions to the overall prediction accuracy. Finally, the method was also applied to docking unbound subunit structures from a previously published benchmark set.


Assuntos
Inteligência Artificial , Proteínas/química , Proteínas/metabolismo , Dimerização , Modelos Moleculares , Modelos Teóricos , Ligação Proteica , Conformação Proteica , Reprodutibilidade dos Testes , Propriedades de Superfície
5.
J Am Chem Soc ; 124(17): 4838-47, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11971734

RESUMO

DNA dodecamers of the alternating d(CG).d(CG) sequence with six phosphate groups either charge-neutralized or substituted by neutral methylphosphonates across the major or minor groove have been subjected to energy minimization to determine the conformational effect of the asymmetric elimination of phosphate charge. We report bending angles, directions of bending, and detailed structural characteristics such as groove widths and local base-pair parameters. Our principal results are that charge neutralization on one face of the DNA induces significant bending toward the neutralized face, in agreement with theoretical predictions on a simplified model and experimental data on a similar base-pair sequence, and that the DNA conformation averaged over all stereospecific methylphosphonate substitutions is nearly the same as the conformation produced by charge neutralization of the phosphates. Individual isomers, however, cover a wide range of structures, with the magnitude and direction of overall bending sensitive to the precise stereochemical pattern of neutralization. Our simulation does not explicitly contain counterions, and the results therefore suggest that counterions can influence DNA structure by neutralizing the phosphate charge. These data provide new hints into the molecular mechanisms which underlie the deformations of DNA structure induced by the binding of positively charged proteins and other tightly associated cationic species.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Modelos Químicos , Modelos Moleculares , Oligonucleotídeos/química , Organofosfatos/química , Compostos Organofosforados/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...