Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 6(5): 3268, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30124683

RESUMO

[This corrects the article DOI: 10.1039/C4SC02058H.].

2.
J Am Chem Soc ; 135(30): 11257-65, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23837635

RESUMO

An intramolecular reaction catalyzed by Rh porphyrins was studied in the presence of interfacial electric fields. 1-Diazo-3,3-dimethyl-5-phenylhex-5-en-2-one (2) reacts with Rh porphyrins via a putative carbenoid intermediate to form cyclopropanation product 3,3-dimethyl-5-phenylbicyclo[3.1.0]hexan-2-one (3) and insertion product 3,3-dimethyl-2,3-dihydro-[1,1'-biphenyl]-4(1H)-one (4). To study this reaction in the presence of an interfacial electric field, Si electrodes coated with thin films of insulating dielectric layers were used as the opposing walls of a reaction vessel, and Rh porphyrin catalysts were localized to the dielectric-electrolyte interface. The charge density was varied at the interface by changing the voltage across the two electrodes. The product ratio was analyzed as a function of the applied voltage and the surface chemistry of the dielectric layer. In the absence of an applied voltage, the ratio of 3:4 was approximately 10:1. With a TiO2 surface, application of a voltage induced a Rh porphyrin-TiO2 interaction that resulted in an increase in the 3:4 ratio to a maximum in which 4 was nearly completely suppressed (>100:1). With an Al2O3 surface or an alkylphosphonate-coated surface, the voltage caused a decrease in the 3:4 ratio, with a maximum effect of lowering the ratio to 1:2. The voltage-induced decrease in the 3:4 ratio in the absence of TiO2 was consistent with a field-dipole effect that changed the difference in activation energies for the product-determining step to favor product 4. Effects were observed for porphyrin catalysts localized to the electrode-electrolyte interface either through covalent attachment or surface adsorption, enabling the selectivity to be controlled with unfunctionalized Rh porphyrins. The magnitude of the selectivity change was limited by the maximum interfacial charge density that could be attained before dielectric breakdown.

3.
J Am Chem Soc ; 134(1): 186-9, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22191979

RESUMO

The rearrangement of cis-stilbene oxide catalyzed by Al(2)O(3) was studied in the presence of interfacial electric fields. Thin films of Al(2)O(3) deposited on Si electrodes were used as the opposing walls of a reaction vessel. Application of a voltage across the electrodes engendered electrochemical double layer formation at the Al(2)O(3)-solution interface. The aldehyde to ketone product ratio of the rearrangement was increased by up to a factor of 63 as the magnitude of the double layer charge density was increased. The results support a field-dipole effect on the selectivity of the catalytic reaction.


Assuntos
Óxido de Alumínio/química , Eletroquímica/métodos , Compostos de Epóxi/química , Catálise , Ácidos de Lewis/química , Especificidade por Substrato
4.
J Am Chem Soc ; 132(2): 434-5, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20020743

RESUMO

The adsorption of a small amount of cesium on Ag(110) redirects the partial oxidation products of styrene from phenylacetaldehyde and phenylketene to styrene oxide. The cesium stabilizes the oxametallacycle intermediate and hinders its transformation to the intermediate that leads to the other products. Cesium does not appear to create any electronic effects on the bonding of the intermediates. Low coverages of cesium induce a (1 x 2) missing-row reconstruction of the entire clean Ag(110) surface and a (3 x 5) surface oxide structure on the cesium-reconstructed Ag(110) surface. This (3 x 5)-ordered surface oxide is superimposed on the Ag(111) microfacets produced by the cesium-induced reconstruction, which leads to selectivity and reactivity very similar to those of the extended (111) surface. These studies provide insight into the microscopic origins of the structural effects of cesium in styrene epoxidation on silver catalysts.


Assuntos
Césio/química , Compostos de Epóxi/síntese química , Prata/química , Estireno/química , Catálise , Compostos de Epóxi/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...