Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Drug Resist ; 4(2): 463-484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35582027

RESUMO

Aim: Co-encapsulation of anti-cancer agents in pegylated liposomes may provide an effective tool to maximize efficacy of combined drug therapy by taking advantage of the long circulation time, passive targeting, and reduced toxicity of liposome formulations. Methods: We have developed several liposome formulations of co-encapsulated drugs using various permutations of three active agents: doxorubicin (Dox), mitomycin-C lipidic prodrug (MLP), and alendronate (Ald). Dox and MLP are available in single drug liposomal formulations: pegylated liposomal Dox (PLD, Doxil®), clinically approved, and pegylated liposomal MLP (PL-MLP, Promitil®), in phase 1-2 clinical testing. We have previously shown that co-encapsulation of Dox and Ald in pegylated liposomes (PLAD) results in a formulation with valuable immuno-pharmacologic properties and superior antitumor properties over PLD in immunocompetent animal models. Building on the PLAD and PL-MLP platforms, we developed a new pegylated liposomal formulation of co-entrapped Dox and MLP (PLAD-MLP), with the former localized in the liposome water phase via remote loading with an ammonium alendronate and the latter passively loaded into the liposome lipid bilayer. An alternative formulation of co-entrapped MLP and Dox in which ammonium Ald was replaced with ammonium sulfate (PLD-MLP) was also tested for comparative purposes. Results: PLAD-MLP displays high loading efficiency of Dox and MLP nearing 100%, and a mean vesicle diameter of 110 nm. Cryo-transmission electron microscopy (cryo-TEM) of PLAD-MLP reveals round vesicles with an intra-vesicle Dox-alendronate precipitate. PLAD-MLP was tested in an in vitro MLP activation assay with the reducing agent dithiothreitol and found to be significantly less susceptible to thiolytic activation than PL-MLP. Alongside thiolytic activation of MLP, a significant fraction of encapsulated Dox was released from liposomes. PLAD-MLP is stable upon in vitro incubation in human plasma with nearly 100% drug retention. In mouse pharmacokinetic studies, PLAD-MLP extended MLP half-life in circulation when compared to that of MLP delivered as PL-MLP. In addition, the MLP levels in tissues were greater than those obtained with PL-MLP, indicating that PLAD-MLP slows down the cleavage of the prodrug MLP to MMC, thus resulting in a more sustained and prolonged exposure. The circulation half-life of Dox in PLAD-MLP was similar to the PLD Dox half-life. The pattern of tissue distribution was similar for the co-encapsulated drugs, although Dox levels were generally higher than those of MLP, as expected from cleavage of MLP to its active metabolite MMC. In mouse tumor models, the therapeutic activity of PLAD-MLP was superior to PL-MLP and PLD with a convenient safety dose window. The Ald-free formulation, PLD-MLP, displayed similar pharmacokinetic properties to PLAD-MLP, but its therapeutic activity was lower. Conclusion: PLAD-MLP is a novel multi-drug liposome formulation with attractive pharmacological properties and powerful antitumor activity and is a promising therapeutic tool for combination cancer chemotherapy.

2.
J Drug Target ; 24(9): 878-889, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27187807

RESUMO

We developed a pegylated liposome formulation of a dissociable salt of a nitrogen-containing bisphosphonate, alendronate (Ald), coencapsulated with the anthracycline, doxorubicin (Dox), a commonly used chemotherapeutic agent. Liposome-encapsulated ammonium Ald generates a gradient driving Dox into liposomes, forming a salt that holds both drugs in the liposome water phase. The resulting formulation (PLAD) allows for a high-loading efficiency of Dox, comparable to that of clinically approved pegylated liposomal doxorubicin sulfate (PLD) and is very stable in plasma stability assays. Cytotoxicity tests indicate greater potency for PLAD compared to PLD. This appears to be related to a synergistic effect of the coencapsulated Ald and Dox. PLAD and PLD differed in in vitro monocyte-induced IL-1ß release (greater for PLAD) and complement activation (greater for PLD). A molar ratio Ald/Dox of ∼1:1 seems to provide an optimal compromise between loading efficiency of Dox, circulation time and in vivo toxicity of PLAD. In mice, the circulation half-life and tumor uptake of PLAD were comparable to PLD. In the M109R and 4T1 tumor models in immunocompetent mice, PLAD was superior to PLD in the growth inhibition of subcutaneous tumor implants. This new formulation appears to be a promising tool to exploit the antitumor effects of aminobisphosphonates in synergy with chemotherapy.


Assuntos
Alendronato/química , Antineoplásicos/química , Doxorrubicina/química , Lipossomos/química , Propilenoglicol/química , Alendronato/administração & dosagem , Alendronato/farmacocinética , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Feminino , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Camundongos , Neoplasias Experimentais/tratamento farmacológico
3.
Pharm Res ; 33(3): 686-700, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26572644

RESUMO

PURPOSE: Pegylated liposomal (PL) mitomycin C lipid-based prodrug (MLP) has recently entered clinical testing. We studied here the preclinical pharmacology of PL-MLP. METHODS: The stability, pharmacokinetics, biodistribution, and other pharmacologic parameters of PL-MLP were examined. Thiolytic cleavage of MLP and release of active mitomycin C (MMC) were studied using dithiothreitol (DTT), and by incubation with tissue homogenates. RESULTS: MLP was incorporated in the bilayer at 10% molar ratio with nearly 100% entrapment efficiency, resulting in a formulation with high plasma stability. In vitro, DTT induced cleavage of MLP with predictable kinetics, generating MMC and enhancing pharmacological activity. A long circulation half-life of MLP (10-15 h) was observed in rodents and minipigs. Free MMC is either extremely low or undetectable in plasma. However, urine from PL-MLP injected rats revealed delayed but significant excretion of MMC indicating in vivo activation of MLP. Studies in mice injected with H3-cholesterol radiolabeled PL-MLP demonstrated relatively greater tissue levels of H3-cholesterol than MLP. MLP levels were highest in tumor and spleen, and very low or undetectable in liver and lung. Rapid cleavage of MLP in various tissues, particularly in liver, was shown in ex-vivo experiments of PL-MLP with tissue homogenates. PL-MLP was less toxic in vivo than equivalent doses of MMC. Therapeutic studies in C26 mouse tumor models demonstrated dose-dependent improved efficacy of PL-MLP over MMC. CONCLUSIONS: Thiolytic activation of PL-MLP occurs in tissues but not in plasma. Liposomal delivery of MLP confers a favorable pharmacological profile and greater therapeutic index than MMC.


Assuntos
Lipossomos/farmacologia , Lipossomos/farmacocinética , Mitomicina/farmacologia , Mitomicina/farmacocinética , Plasma/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/farmacocinética , Animais , Química Farmacêutica/métodos , Colesterol/metabolismo , Ditiotreitol/metabolismo , Estabilidade de Medicamentos , Feminino , Meia-Vida , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ratos , Ratos Sprague-Dawley , Baço/metabolismo , Suínos , Distribuição Tecidual
4.
J Control Release ; 167(3): 265-75, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23419948

RESUMO

BACKGROUND: Zoledronic acid (Zol) is a potent inhibitor of farnesyl-pyrophosphate synthase with broad clinical use in the treatment of osteoporosis, and bone metastases. We have previously shown that encapsulation of Zol in liposomes targeted to the folate receptor (FR) greatly enhances its in vitro cytotoxicity. To examine whether targeted liposomal delivery of Zol could be a useful therapeutic approach, we investigated here the in vivo pharmacology of i.v. administered liposomal Zol (L-Zol) in murine models. METHODS: Zol was passively entrapped in the water phase of liposomes containing a small fraction of either dipalmitoyl-phosphatidylglycerol (DPPG) or a polyethylene-glycol (PEG)-conjugated phospholipid with or without insertion of a folate lipophilic conjugate. Radiolabeled formulations were used for pharmacokinetic (PK) and biodistribution studies. Toxicity was evaluated by clinical, hematological, biochemical, and histopathological parameters. Therapeutic studies comparing free Zol, nontargeted and folate targeted L-Zol were performed in FR-expressing human tumor models. RESULTS: Encapsulation of Zol in liposomes resulted in major PK changes including sustained high plasma levels and very slow clearance. DPPG-L-Zol was cleared faster than PEG-L-Zol. Grafting of folate lipophilic conjugates on liposomes further accelerated the clearance of Zol. L-Zol caused a major shift in drug tissue distribution when compared to free Zol, with a major increase (20 to 100-fold) in liver and spleen, a substantial increase (7 to 10-fold) in tumor, and a modest increase (2-fold) in bone. Liposomal formulations proved to be highly toxic, up to 50-fold more than free Zol. PEG-L-Zol was more toxic than DPPG-L-Zol. Toxicity was non-cumulative and appears to involve macrophage/monocyte activation and release of cytokines. Co-injection of L-Zol with a large dose of blank liposomes, or injection of a very low Zol-to-phospholipid ratio liposome formulation reduced toxicity by 2-4-fold suggesting that diluting macrophage exposure below a threshold Zol concentration is important to overcome toxicity. L-Zol failed to significantly enhance the therapeutic activity of Zol vis-à-vis free ZOL and doxorubicin. Folate-targeted L-Zol was marginally better than other treatment modalities in the KB tumor model but toxic deaths greatly affected the outcome. CONCLUSIONS: Liposome delivery of Zol causes a major change in tissue drug distribution and an increase in tumor Zol levels. However, the severe in vivo toxicity of L-Zol seriously limits its dose and its utility for in vivo tumor cell targeting. This strategy is under evaluation using liposomes carrying less toxic bisphosphonates.


Assuntos
Conservadores da Densidade Óssea/administração & dosagem , Conservadores da Densidade Óssea/farmacocinética , Difosfonatos/administração & dosagem , Difosfonatos/farmacocinética , Imidazóis/administração & dosagem , Imidazóis/farmacocinética , Animais , Feminino , Ácido Fólico/química , Lipídeos/química , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Polietilenoglicóis/química , Distribuição Tecidual , Ácido Zoledrônico
5.
J Control Release ; 160(2): 245-53, 2012 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-22134116

RESUMO

BACKGROUND: A mitomycin-C lipid-based prodrug (MLP) formulated in pegylated liposomes (PL-MLP) was previously reported to have significant antitumor activity and reduced toxicity in mouse tumor models (Clin Cancer Res 12:1913-20, 2006). MLP is activated by thiolysis releasing mitomycin-C (MMC) which rapidly dissociates from liposomes. The purpose of this study was to examine the plasma stability, pharmacokinetics, and antitumor activity of PL-MLP in mouse models of human gastroentero-pancreatic tumors. METHODS: MLP was incorporated with almost 100% efficiency in pegylated liposomes composed of hydrogenated phosphatidylcholine, with or without cholesterol (Chol). Mean vesicle size was 45-65 nm for liposome preparations downsized by homogenization, and 80-100 nm when downsized by extrusion, the latter displaying narrower polydispersity. MLP to phospholipid mole ratio was 5% (~20 µg MMC-equivalents/µmol). Therapeutic studies were carried out in the N87 gastric carcinoma (Ca), HCT15 colon Ca, and Panc-1 pancreatic Ca models implanted s.c. in CD1 nude mice. Treatment was administered i.v. in mice with established tumors. RESULTS: PL-MLP was very stable when incubated in plasma, and whole blood with a maximum of 5% release and activation to free MMC after 24 h. In the presence of a strong reducing agent (dithiotreitol), MLP was almost entirely activated to free MMC. Pharmacokinetic studies revealed major differences in plasma clearance between free MMC and PL-MLP. The longest half-lives were observed for extruded and Chol-containing preparations. Using a liposome radiolabel, it was found that the plasma levels of liposomes and prodrug were nearly superimposable confirming the absence of drug leakage in circulation. In vivo prodrug activation was significantly increased by co-injection of a large dose of a biocompatible reducing agent, N-acetylcysteine. PL-MLP was significantly more effective in delaying tumor growth and resulted in more tumor regressions than irinotecan in the N87 and HCT15 models, and than gemcitabine in the Panc-1 model. PL-MLP was ~3-fold less toxic than free MMC at MMC-equivalent doses, and displayed mild myelosuppression at therapeutic doses. CONCLUSIONS: Delivery of MLP in pegylated liposomes is more effective than conventional chemotherapy in the treatment of gastroentero-pancreatic ectopic tumor models, and may represent an effective tool for treatment of these malignancies in the clinical setting with improved safety over free MMC. Reducing agents offer a tool for controlling in vivo prodrug release.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Portadores de Fármacos/química , Lipídeos/química , Mitomicina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Polietilenoglicóis/química , Pró-Fármacos/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Colesterol/química , Estabilidade de Medicamentos , Feminino , Humanos , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Transmissão , Mitomicina/administração & dosagem , Mitomicina/farmacocinética , Tamanho da Partícula , Fosfatidilcolinas/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Propriedades de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Control Release ; 146(1): 76-83, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20462513

RESUMO

INTRODUCTION: Zoledronic acid (ZOL), a nitrogen-containing bisphosphonate, is a potent inhibitor of farnesyl-pyrophosphate synthase with poor in vitro cytotoxic activity as a result of its limited diffusion into tumor cells. The purpose of this study was to investigate whether liposomes targeted to the folate receptor (FR) can effectively deliver ZOL to tumor cells and enhance its in vitro cytotoxicity. METHODS: ZOL was entrapped in the water phase of liposomes of various compositions with or without a lipophilic folate ligand. Stability and blood levels after i.v. injection were checked. The in vitro cytotoxic activity and cell uptake of liposomal ZOL (L-ZOL) were examined on various human and mouse cell lines. RESULTS: All formulations were highly stable and resulted in high blood levels in contrast to free ZOL which was rapidly cleared from plasma. Non-targeted L-ZOL was devoid of any in vitro activity at concentrations up to 200 microM. In contrast, potent cytotoxic activity of folate-targeted L-ZOL (FTL-ZOL) was observed, with optimal activity, reaching the sub-micromolar range, for dipalmitoyl-phosphatidylglycerol (DPPG)-containing liposomes and relatively lower activity for pegylated (PEG) formulations. IC50 values of FTL-ZOL on FR-expressing tumor cells were >100-fold lower than those of free ZOL. Compared to doxorubicin, the cytotoxicity of DPPG-FTL-ZOL was equivalent in drug-sensitive cell lines, and greatly superior in drug-resistant cell lines. When tested on the non-FR upregulated cell lines, the cytotoxicity of FTL-ZOL was lower but still superior to that of L-ZOL. The uptake of ZOL by FR-expressing tumor cells was enhanced approximately 25-fold with DPPG-FTL-ZOL, and only approximately 4-fold with PEG-FTL-ZOL. CONCLUSIONS: FR targeting of ZOL using liposomes is an effective means to exploit the tumor cell growth inhibitory properties of ZOL. DPPG-FTL-ZOL is significantly more efficient at intracellular delivery of ZOL than PEG-FTL-ZOL in FR-expressing tumor cells.


Assuntos
Antineoplásicos/administração & dosagem , Difosfonatos/administração & dosagem , Portadores de Fármacos/química , Ácido Fólico/química , Imidazóis/administração & dosagem , Fosfolipídeos/química , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Difosfonatos/sangue , Difosfonatos/farmacocinética , Difosfonatos/farmacologia , Composição de Medicamentos , Estabilidade de Medicamentos , Feminino , Receptores de Folato com Âncoras de GPI/biossíntese , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/metabolismo , Humanos , Imidazóis/sangue , Imidazóis/farmacocinética , Imidazóis/farmacologia , Bicamadas Lipídicas/química , Lipossomos , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Ácido Zoledrônico
7.
Cancer Chemother Pharmacol ; 66(1): 43-52, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19779718

RESUMO

PURPOSE: The folate receptor (FR) is overexpressed in a broad spectrum of malignant tumors and represents an attractive target for selective delivery of anti-cancer agents to FR-expressing tumors. Targeting liposomes to the FR has been proposed as a way to enhance the effects of liposome-based chemotherapy. METHODS: Folate-polyethylene glycol-distearoyl-phosphatidyl-ethanolamine conjugate was inserted into pegylated liposomal doxorubicin (PLD). The therapeutic activity of folate-targeted (FT-PLD) and non-targeted (PLD) pegylated liposomal doxorubicin was tested in two human tumor models (KB, KB-V) and in one mouse ascitic tumor model (FR-expressing J6456) by the i.v. systemic route in all models, and by the i.p. intracavitary route in the ascitic tumor model only. RESULTS: Consistent with previous studies, PLD was clearly superior to free doxorubicin in all tumor models. When targeted and non-targeted liposome formulations were compared, FT-PLD was more effective than PLD in the KB and KB-V xenograft models, and in the J6456 intra-cavitary therapy model. The therapeutic effect was dose-dependent in the KB model and schedule-dependent in the J6456 intra-cavitary therapy model. In some experiments, toxic deaths aggravated by folate-depleted diet were a major confounding factor. In a non-FR expressing J6456 model, FT-PLD was as active as PLD indicating that its activity is not limited to FR-expressing tumors. CONCLUSION: Folate-targeting confers a significant albeit modest therapeutic improvement to PLD in FR-expressing tumor models, which appears particularly valuable in intracavitary therapy. The potential clinical added value of this approach has yet to be determined.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Proteínas de Transporte/metabolismo , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico/administração & dosagem , Lipossomos/administração & dosagem , Neoplasias/tratamento farmacológico , Polietilenoglicóis/administração & dosagem , Receptores de Superfície Celular/metabolismo , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Linhagem Celular Transformada , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/farmacocinética , Feminino , Receptores de Folato com Âncoras de GPI , Ácido Fólico/química , Humanos , Injeções Intraperitoneais , Injeções Intravenosas , Lipossomos/síntese química , Lipossomos/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...