Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 55(11): 1561-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24915316

RESUMO

Conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA) isomers are present in foods derived from ruminants as a result of the respective linoleic acid (LA) and α-linolenic acid (LNA) metabolism by ruminal microorganisms and in animals' tissues. CLA and CLNA have isomer-specific, health-promoting properties, including anticarcinogenic, antiatherogenic, anti-inflammatory, and antidiabetic activity, as well as the ability to reduce body fat. Besides ruminal microorganisms, such as Butyrivibrio fibrisolvens, many food-grade bacteria, such as bifidobacteria, lactic acid bacteria (LAB), and propionibacteria, are able to convert LA and LNA to CLA and CLNA, respectively. Linoleate isomerase activity, responsible for this conversion, is strain-dependent and probably related to the ability of the producer strain to tolerate the toxic effects of LA and LNA. Since natural concentrations of CLA and CLNA in ruminal food products are relatively low to exert their health benefits, food-grade bacteria with linoleate isomerase activity could be used as starter or adjunct cultures to develop functional fermented dairy and meat products with increased levels of CLA and CLNA or included in fermented products as probiotic cultures. However, results obtained so far are below expectations due to technological bottlenecks. More research is needed to assess if bacterial production kinetics can be increased and can match food processing requirements.


Assuntos
Bifidobacterium/metabolismo , Laticínios , Fermentação , Produtos da Carne , Probióticos , Ácido alfa-Linolênico/biossíntese , Ácidos Linoleicos Conjugados/biossíntese
2.
Int J Food Microbiol ; 155(3): 234-40, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22405353

RESUMO

There is great interest in conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA) isomers because of their supposed health-promoting properties. Therefore, the differences in production kinetics of CLA and CLNA isomers from linoleic acid (LA) and α-linolenic acid (α-LNA), respectively, by bifidobacteria were investigated. Laboratory fermentations, supplemented with LA or α-LNA in the fermentation medium, were performed with Bifidobacterium bifidum LMG 10645, Bifidobacterium breve LMG 11040, B. breve LMG 11084, B. breve LMG 11613, B. breve LMG 13194, and Bifidobacterium pseudolongum subsp. pseudolongum LMG 11595. Conversion of LA and α-LNA to CLA and CLNA isomers, respectively, started immediately upon addition of the substrate fatty acids. During the active growth phase, the c9, t11-CLA isomer and the putative c9, t11, c15-CLNA isomer were formed. Further fermentation resulted in a reduction in the concentration of c9, t11-CLA and c9, t11, c15-CLNA and the subsequent production of the t9, t11-CLA isomer and the putative t9, t11, c15-CLNA isomer, respectively. Modelling of the growth and metabolite data indicated differences in production kinetics among the strains. Some strains displayed a high specific conversion of LA and α-LNA despite poor growth, whereas other strains grew well but displayed lower conversion. Production of specific CLA and CLNA isomers by bifidobacteria holds potential for the production of functional foods and could contribute to their probiotic properties.


Assuntos
Bifidobacterium/metabolismo , Fermentação , Ácidos Linoleicos Conjugados/biossíntese , Ácido alfa-Linolênico/biossíntese , Isomerismo , Cinética
3.
Appl Microbiol Biotechnol ; 87(6): 2257-66, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20556602

RESUMO

Conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA) isomers have attracted great interest because of their potential health benefits. Formation of CLA and CLNA takes place in the rumen during biohydrogenation. Several studies have indicated that certain types of intestinal bacteria, including bifidobacteria, are able to convert linoleic acid (LA) to CLA. The role of intestinal bacteria in the formation of CLNA isomers is largely unknown. In the present study, a screening of 36 different Bifidobacterium strains for their ability to produce CLA and CLNA from free LA and alpha-linolenic acid (LNA), respectively, was performed. The strains were grown in MRS broth, to which LA or LNA (0.5 mg ml(-1)) were added after 7 h of bacterial growth. Cultures were further incubated at 37 degrees C for 72 h. Six strains (four Bifidobacterium breve strains, a Bifidobacterium bifidum strain and a Bifidobacterium pseudolongum strain) were able to produce different CLA and CLNA isomers. Conversion percentages varied from 19.5% to 53.5% for CLA production and from 55.6% to 78.4% for CLNA production among these strains. The CLA isomers produced were further identified with Ag(+)-HPLC. LA was mainly converted to t9t11-CLA and c9t11-CLA. The main CLNA isomers were identified with GC-MS as c9t11c15-CLNA and t9t11c15-CLNA.


Assuntos
Bifidobacterium/metabolismo , Ácidos Linoleicos Conjugados/biossíntese , Animais , Bifidobacterium/química , Bifidobacterium/isolamento & purificação , Bovinos , Galinhas , Fezes/microbiologia , Intestinos/microbiologia , Isomerismo , Ácidos Linoleicos Conjugados/química , Ratos , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...