Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1369645, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686111

RESUMO

Tuberculosis (TB) stands as the second most fatal infectious disease globally, causing 1.3 million deaths in 2022. The resurgence of TB and the alarming rise of antibiotic resistance demand urgent call to develop novel antituberculosis drugs. Despite concerted efforts to control TB, the disease persists and spreads rapidly on a global scale. Targeting stress response pathways in Mycobacterium tuberculosis (Mtb) has become imperative to achieve complete eradication. This study employs subtractive genomics to identify and prioritize potential drug targets among the hypothetical proteins of Mtb, focusing on indispensable pathways. Amongst 177 essential hypothetical proteins, 152 were nonhomologous to human. These proteins participated in 34 pathways, and a 20-fold enrichment of SUF pathway genes led to its selection as a target pathway. Fe-S clusters are fundamental, widely distributed protein cofactors involved in vital cellular processes. The survival of Mtb in a hypoxic environment relies on the iron-sulfur (Fe-S) cluster biogenesis pathway for the repair of damaged Fe-S clusters. It also protects pathogen against drugs, ensuring controlled iron utilization and contributing to drug resistance. In Mtb, six proteins of Fe-S cluster assembly pathway are encoded by the suf operon. The present study was focused on SufD because of its role in iron acquisition and prevention of Fenton reaction. The research further delves into the in silico characterization of SufD, utilizing bioinformatics tools for sequence and structure based analysis. The protein's structural features, including the identification of conserved regions, motifs, and 3D structure prediction enhanced functional annotation. Target based virtual screening of compounds from the ChEMBL database resulted in 12 inhibitors with best binding affinities. Drug likeness and ADMET profiling of potential inhibitors identified promising compounds with favorable drug-like properties. The study also involved cloning in SUMO-pRSF-Duet1 expression vector, overexpression, and purification of recombinant SufD from E. coli BL21 (DE3) cells. Optimization of expression conditions resulted in soluble production, and subsequent purification highlighting the efficacy of the SUMO fusion system for challenging Mtb proteins in E. coli. These findings provide valuable insights into pharmacological targets for future experimental studies, holding promise for the development of targeted therapy against Mtb.

2.
Arch Pharm (Weinheim) ; 353(6): e2000006, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32309890

RESUMO

A series of new benzofuran/oxadiazole hybrids (8a-n) was synthesized from 2H-chromene-3-carbonitriles (3a-c) through the multistep synthetic methodology, and these hybrids are known to exhibit anticancer activities. All the compounds were evaluated for their in vitro cytotoxicity against the HCT116 and MIA PaCa2 cell lines. Compounds 6a (IC50 : 9.71 ± 1.9 µM), 6b (IC50 : 7.48 ± 0.6 µM), and 6c (IC50 : 3.27 ± 1.1 µM) displayed a significant cytotoxic activity, whereas compounds 8d and 8e exhibited good activity against both cell lines. The depletion of glycogen synthase kinase-3ß (GSK3ß) induces apoptosis through the inhibition of basal NF-κB activity in HCT116 colon cancer cells and MIA PaCa2 pancreatic cancer cells. Molecular docking of compounds 6a, 6b, 6c, 8d, and 8e with GSK3ß demonstrated the best binding affinity, correlating with the biological activity assay. Furthermore, the structure-activity relationship of these novel compounds reveals promising features for their use in anticancer therapy.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Simulação de Acoplamento Molecular , Oxidiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzofuranos/síntese química , Benzofuranos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Relação Estrutura-Atividade
3.
J Vis Exp ; (82): e50625, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24378622

RESUMO

A cell culture model system, if a close mimic of host environmental conditions, can serve as an inexpensive, reproducible and easily manipulatable alternative to animal model systems for the study of a specific step of microbial pathogen infection. A human monocytic cell line THP-1 which, upon phorbol ester treatment, is differentiated into macrophages, has previously been used to study virulence strategies of many intracellular pathogens including Mycobacterium tuberculosis. Here, we discuss a protocol to enact an in vitro cell culture model system using THP-1 macrophages to delineate the interaction of an opportunistic human yeast pathogen Candida glabrata with host phagocytic cells. This model system is simple, fast, amenable to high-throughput mutant screens, and requires no sophisticated equipment. A typical THP-1 macrophage infection experiment takes approximately 24 hr with an additional 24-48 hr to allow recovered intracellular yeast to grow on rich medium for colony forming unit-based viability analysis. Like other in vitro model systems, a possible limitation of this approach is difficulty in extrapolating the results obtained to a highly complex immune cell circuitry existing in the human host. However, despite this, the current protocol is very useful to elucidate the strategies that a fungal pathogen may employ to evade/counteract antimicrobial response and survive, adapt, and proliferate in the nutrient-poor environment of host immune cells.


Assuntos
Candida glabrata/fisiologia , Técnicas de Cultura de Células/métodos , Macrófagos/citologia , Macrófagos/microbiologia , Micologia/métodos , Candida glabrata/imunologia , Candida glabrata/patogenicidade , Linhagem Celular Tumoral , Interações Hospedeiro-Patógeno , Humanos , Lactente , Leucemia Monocítica Aguda , Macrófagos/imunologia , Masculino , Virulência
4.
PLoS Pathog ; 8(8): e1002863, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916016

RESUMO

Fungal septicemia is an increasingly common complication of immunocompromised patients worldwide. Candida species are the leading cause of invasive mycoses with Candida glabrata being the second most frequently isolated Candida species from Intensive Care Unit patients. Despite its clinical importance, very little is known about the mechanisms that C. glabrata employs to survive the antimicrobial and immune response of the mammalian host. Here, to decipher the interaction of C. glabrata with the host immune cells, we have screened a library of 18,350 C. glabrata Tn7 insertion mutants for reduced survival in human THP-1 macrophages via signature-tagged mutagenesis approach. A total of 56 genes, belonging to diverse biological processes including chromatin organization and golgi vesicle transport, were identified which are required for survival and/or replication of C. glabrata in macrophages. We report for the first time that C. glabrata wild-type cells respond to the intracellular milieu of macrophage by modifying their chromatin structure and chromatin resistance to micrococcal nuclease digestion, altered epigenetic signature, decreased protein acetylation and increased cellular lysine deacetylase activity are the hall-marks of macrophage-internalized C. glabrata cells. Consistent with this, mutants defective in chromatin organization (Cgrsc3-aΔ, Cgrsc3-bΔ, Cgrsc3-aΔbΔ, Cgrtt109Δ) and DNA damage repair (Cgrtt107Δ, Cgsgs1Δ) showed attenuated virulence in the murine model of disseminated candidiasis. Further, genome-wide transcriptional profiling analysis on THP-1 macrophage-internalized yeasts revealed deregulation of energy metabolism in Cgrsc3-aΔ and Cgrtt109Δ mutants. Collectively, our findings establish chromatin remodeling as a central regulator of survival strategies which facilitates a reprogramming of cellular energy metabolism in macrophage-internalized C. glabrata cells and provide protection against DNA damage.


Assuntos
Candida glabrata/patogenicidade , Candidíase/metabolismo , Montagem e Desmontagem da Cromatina , Epigênese Genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Macrófagos/microbiologia , Animais , Candida glabrata/genética , Candida glabrata/imunologia , Candida glabrata/metabolismo , Candidíase/genética , Candidíase/imunologia , Linhagem Celular , Estudo de Associação Genômica Ampla , Humanos , Mutação INDEL , Macrófagos/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...