Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Iran J Pharm Res ; 14(1): 3-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25561907

RESUMO

We developed biofunctionalized nanoparticles with magnetic properties by immobilizing diethyleneglycol (DEG) on Gd2O3, and PEGilation of small particulate gadolinium oxide (SPGO) with two methoxy-polyethyleneglycol-silane (mPEG-Silane 550 and 2000 Da) using a new supervised polyol route, described recently. In conjunction to the previous study to achieve a high quality synthesis and increase in the product yield of nanoparticles; assessment of the effects of functionalization, chemisorption and altered reaction conditions, such as NaOH concentration, temperature, reaction time and their solubility, on size reproducibility were determined as the goals of this study. Moreover, the effects of centrifugation, filtration and dialysis of the solution on the nono magnetic particle size values and their stability against aggregation have been evaluated. Optimization of reaction parameters led to strong coating of magnetic nanoparticles with the ligands which increases the reproducibility of particle size measurements. Furthermore, the ligand-coated nanoparticles showed enhanced colloidal stability as a result of the steric stabilization function of the ligands grafted on the surface of particles. The experiments showed that DEG and mPEG-silane (550 and 2000 Dalton) are chemisorbed on the particle surfaces of Gd2O3 and SPGO which led to particle sizes of 5.9 ± 0.13 nm, 51.3 ± 1.46 nm and 194.2 ± 22.1 nm, respectively. The small size of DEG-Gd2O3 is acceptably below the cutoff of 6nm, enabling easy diffusion through lymphatics and filtration from kidney, and thus provides a great deal of potential for further in-vivo and in-vitro application.

2.
Nanoscale Res Lett ; 7(1): 549, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23033866

RESUMO

Despite its good resolution, magnetic resonance imaging intrinsically has low sensitivity. Recently, contrast agent nanoparticles have been used as sensitivity and contrast enhancer. The aim of this study was to investigate a new controlled synthesis method for gadolinium oxide-based nanoparticle preparation. For this purpose, diethyleneglycol coating of gadolinium oxide (Gd2O3-DEG) was performed using new supervised polyol route, and small particulate gadolinium oxide (SPGO) PEGylation was obtained with methoxy-polyethylene-glycol-silane (550 and 2,000 Da) coatings as SPGO-mPEG-silane550 and 2,000, respectively. Physicochemical characterization and magnetic properties of these three contrast agents in comparison with conventional Gd-DTPA were verified by dynamic light scattering transmission electron microscopy, Fourier transform infrared spectroscopy, inductively coupled plasma, X-ray diffraction, vibrating sample magnetometer, and the signal intensity and relaxivity measurements were performed using 1.5-T MRI scanner.As a result, the nanoparticle sizes of Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000 could be reached to 5.9, 51.3, 194.2 nm, respectively. The image signal intensity and longitudinal (r1) and transverse relaxivity (r2) measurements in different concentrations (0.3 to approximately 2.5 mM), revealed the r2/r1 ratios of 1.13, 0.89, 33.34, and 33.72 for Gd-DTPA, Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000, respectively.The achievement of new synthesis route of Gd2O3-DEG resulted in lower r2/r1 ratio for Gd2O3-DEG than Gd-DTPA and other previous synthesized methods by this and other groups. The smaller r2/r1 ratios of two PEGylated-SPGO contrast agents in our study in comparison with r2/r1 ratio of previous PEGylation (r2/r1 = 81.9 for mPEG-silane 6,000 MW) showed that these new three introduced contrast agents could potentially be proper contrast enhancers for cellular and molecular MR imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...