Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Parasit Vectors ; 17(1): 169, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566228

RESUMO

BACKGROUND: Triatoma garciabesi and T. guasayana are considered secondary vectors of Trypanosoma cruzi and frequently invade rural houses in central Argentina. Wing and head structures determine the ability of triatomines to disperse. Environmental changes exert selective pressures on populations of both species, promoting changes in these structures that could have consequences for flight dispersal. The aim of this study was to investigate the relationship between a gradient of anthropization and phenotypic plasticity in flight-related traits. METHODS: The research was carried out in Cruz del Eje and Ischilín departments (Córdoba, Argentina) and included 423 individuals of the two species of triatomines. To measure the degree of anthropization, a thematic map was constructed using supervised classification, from which seven landscapes were selected, and nine landscape metrics were extracted and used in a hierarchical analysis. To determine the flight capacity and the invasion of dwellings at different levels of anthropization for both species, entomological indices were calculated. Digital images of the body, head and wings were used to measure linear and geometric morphometric variables related to flight dispersion. One-way ANOVA and canonical variate analysis (CVA) were used to analyze differences in size and shape between levels of anthropization. Procrustes variance of shape was calculated to analyze differences in phenotypic variation in heads and wings. RESULTS: Hierarchical analysis was used to classify the landscapes into three levels of anthropization: high, intermediate and low. The dispersal index for both species yielded similar results across the anthropization gradient. However, in less anthropized landscapes, the density index was higher for T. garciabesi. Additionally, in highly anthropized landscapes, females and males of both species exhibited reduced numbers. Regarding phenotypic changes, the size of body, head and wings of T. garciabesi captured in the most anthropized landscapes was greater than for those captured in less anthropized landscapes. No differences in body size were observed in T. guasayana collected in the different landscapes. However, males from highly anthropized landscapes had smaller heads and wings than those captured in less anthropized landscapes. Both wing and head shapes varied between less and more anthropogenic environments in both species. CONCLUSIONS: Results of the study indicate that the flight-dispersal characteristics of T. garciabesi and T. guasayana changed in response to varying degrees of anthropization.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Humanos , Masculino , Animais , Feminino , Triatoma/fisiologia , População Rural , Argentina , Análise de Variância
2.
Zoonoses Public Health ; 71(1): 34-47, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37792668

RESUMO

Triatomines are the vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. The study aimed to evaluate the association between sociodemographic and environmental factors, and changes in land use and cover, with the occurrence and abundance of triatomines by census sectors in an endemic municipality of northern Minas Gerais, Brazil. The study was conducted in Montes Claros, located in the north of Minas Gerais, Brazil. The entomological data used in the study were collected by active surveillance in the rural area from 2015 to 2019 and by passive surveillance in the urban area from 2009 to 2019. Data on sociodemographic and environmental factors and changes in land use and land cover were obtained from the urban and rural census sectors. A total of 1404 triatomines, belonging to eight species, were captured in domiciles in the rural area (2015-2019) and 277 triatomines in domiciles in the urban area (2009-2019) of the municipality of Montes Claros. The variables the number of domiciles, household economic income, pavement, NDVI, deforestation, unchanged, and anthropic proved to be positively associated with the occurrence and/or number of triatomines in census sectors, within the models. The occurrence of triatomines in the domestic environment of the municipality of Montes Claros should be considered a public health problem, as it suggests a potential risk of establishment and transmission of T. cruzi to domestic animals, farm animals, and humans.


Assuntos
Doença de Chagas , Reduviidae , Trypanosoma cruzi , Humanos , Animais , Brasil/epidemiologia , Doença de Chagas/epidemiologia , Doença de Chagas/veterinária , Animais Domésticos
3.
Acta Trop ; 238: 106787, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36462530

RESUMO

This is an ecological study that investigated the influence of environmental, socioeconomic characteristics and changes in land use and cover on the occurrence of Tegumentary Leishmaniasis (TL) in the city of Montes Claros. The relationships between the number of cases of TL, which occurred between 2012 and 2019, in each census sector and the standardized covariates (Number of properties, altitude, Brazilian Deprivation Index, Normalized Difference Vegetation Index (NDVI), proportion of sector (PS) deforested, PS that underwent other anthropic alterations and unaltered PS) were evaluated with ecological Bayesian Models. Four multivariate models were constructed, with similar quality of adjustments, but Model 1 was the most parsimonious. Model 1 revealed that for each one-unit increase of standard deviation (SD) in the log of the number of properties, at the altitude and root of the deforested PS, corresponds to an increase of 44%, 34% and 24.5% in the number of cases of TL, respectively. The variable NDVI, included in models 3 and 4, was positively associated with the increase in the number of TL cases, being that for each one-unit increase in the NDVI was verified an increase of 21.3% and 20.2% respectively in the models. This study showed that the spatial distribution of TL cases in the city of Montes Claros occurs in a heterogeneous way and our findings support the hypothesis that socio-environmental characteristics and deforestation influence the occurrence of this disease in the studied area. Thus, these factors must be considered for the development of disease control strategies.


Assuntos
Leishmaniose Visceral , Leishmaniose , Humanos , Brasil/epidemiologia , Teorema de Bayes , Leishmaniose Visceral/epidemiologia , Cidades
4.
Mem Inst Oswaldo Cruz ; 117: e200479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35649048

RESUMO

The 2030 Agenda for Sustainable Development is a plan of action for people, planet and prosperity. Thousands of years and centuries of colonisation have passed the precarious housing conditions, food insecurity, lack of sanitation, the limitation of surveillance, health care programs and climate change. Chagas disease continues to be a public health problem. The control programs have been successful in many countries in reducing transmission by T. cruzi; but the results have been variable. WHO makes recommendations for prevention and control with the aim of eliminating Chagas disease as a public health problem. Climate change, deforestation, migration, urbanisation, sylvatic vectors and oral transmission require integrating the economic, social, and environmental dimensions of sustainable development, as well as the links within and between objectives and sectors. While the environment scenarios change around the world, native vector species pose a significant public health threat. The man-made atmosphere change is related to the increase of triatomines' dispersal range, or an increase of the mobility of the vectors from their sylvatic environment to man-made constructions, or humans getting into sylvatic scenarios, leading to an increase of Chagas disease infection. Innovations with the communities and collaborations among municipalities, International cooperation agencies, local governmental agencies, academic partners, developmental agencies, or environmental institutions may present promising solutions, but sustained partnerships, long-term commitment, and strong regional leadership are required. A new world has just opened up for the renewal of surveillance practices, but the lessons learned in the past should be the basis for solutions in the future.


Assuntos
Doença de Chagas , Aquecimento Global , Animais , Cidades , Vetores de Doenças , Meio Ambiente , Humanos
5.
Acta Trop ; 232: 106488, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35533712

RESUMO

Triatoma guasayana (Hemiptera, Reduviidae), considered a secondary vector of Chagas disease, invades rural dwellings through flight dispersal during the warm season in semi-arid Chaco of Argentina. The objective of this study was to define and compare morphometrics features in the relative body size and wing shape of T. guasayana related to temperature and rainfall between spring, summer and end of summer. A total of 188 adults were collected in rural communities in the northwest of the province of Córdoba (central Argentina). Relative body size [body length (mm) / wing length (mm)] and 11 landmarks on the right wing were recorded. The temperature ( °C) and precipitation (mm) data were extracted from the MODIS sensor and Terra Climate dataset, respectively. Correlations between climatic variables and morphological variation were analyzed using Partial Least Square (PLS). Males at the end of summer were smaller than those at spring or summer (F = 4.48; df = 2; p = 0.01), whereas females were similar in relative body size at all seasons (F = 0.76; df = 2; p = 0.47). The PLS in males showed a correlation between wing shape and temperature (r = 0.48; p = 0.03) and precipitation (r = 0.50; p = 0.02) while in females only the temperature was the correlation significant (r = 0.35; p = 0.03). Triatoma guasayana has elongated and thin wings in spring that become short and wide at the end of summer. The morphotype of early summer could allow sustained long-duration flights, while the morphotype of end of summer would be related to short flights, correlated with the dispersive behavior of the species. The results in this study suggest that wing morphology of T. guasayana has phenotypic plasticity, and that temperature and rainfall could be considered modulator factors during the developmental stage.


Assuntos
Doença de Chagas , Triatoma , Animais , Argentina , Feminino , Humanos , Masculino , População Rural , Estações do Ano , Temperatura , Triatoma/anatomia & histologia
6.
Mem Inst Oswaldo Cruz ; 117: e200409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613154

RESUMO

The multiplicity of epidemiological scenarios shown by Chagas Disease, derived from multiple transmission routes of the aetiological agent, occurring on multiple geo-ecobiosocial settings determines the complexity of the disease and reveal the difficulties for its control. From the first description of the link between the parasite, the vector and its domestic habitat and the disease that Carlos Chagas made in 1909, the epidemiological scenarios of the American Trypanosomiasis has shown a dynamic increasing complexity. These scenarios changed with time and geography because of new understandings of the disease from multiple studies, because of policies change at the national and international levels and because human movements brought the parasite and vectors to new geographies. Paradigms that seemed solid at a time were broken down, and we learnt about the global dispersion of Trypanosoma cruzi infection, the multiplicity of transmission routes, that the infection can be cured, and that triatomines are not only a health threat in Latin America. We consider the multiple epidemiological scenarios through the different T. cruzi transmission routes, with or without the participation of a Triatominae vector. We then consider the scenario of regions with vectors without the parasite, to finish with the consideration of future prospects.


Assuntos
Doença de Chagas , Triatominae , Trypanosoma cruzi , Animais , Doença de Chagas/parasitologia , Vetores de Doenças , Ecossistema , Humanos , Triatominae/parasitologia
7.
Mem. Inst. Oswaldo Cruz ; 117: e200479, 2022. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1375914

RESUMO

The 2030 Agenda for Sustainable Development is a plan of action for people, planet and prosperity. Thousands of years and centuries of colonisation have passed the precarious housing conditions, food insecurity, lack of sanitation, the limitation of surveillance, health care programs and climate change. Chagas disease continues to be a public health problem. The control programs have been successful in many countries in reducing transmission by T. cruzi; but the results have been variable. WHO makes recommendations for prevention and control with the aim of eliminating Chagas disease as a public health problem. Climate change, deforestation, migration, urbanisation, sylvatic vectors and oral transmission require integrating the economic, social, and environmental dimensions of sustainable development, as well as the links within and between objectives and sectors. While the environment scenarios change around the world, native vector species pose a significant public health threat. The man-made atmosphere change is related to the increase of triatomines' dispersal range, or an increase of the mobility of the vectors from their sylvatic environment to man-made constructions, or humans getting into sylvatic scenarios, leading to an increase of Chagas disease infection. Innovations with the communities and collaborations among municipalities, International cooperation agencies, local governmental agencies, academic partners, developmental agencies, or environmental institutions may present promising solutions, but sustained partnerships, long-term commitment, and strong regional leadership are required. A new world has just opened up for the renewal of surveillance practices, but the lessons learned in the past should be the basis for solutions in the future.

8.
Mem. Inst. Oswaldo Cruz ; 117: e200409, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1375934

RESUMO

The multiplicity of epidemiological scenarios shown by Chagas Disease, derived from multiple transmission routes of the aetiological agent, occurring on multiple geo-ecobiosocial settings determines the complexity of the disease and reveal the difficulties for its control. From the first description of the link between the parasite, the vector and its domestic habitat and the disease that Carlos Chagas made in 1909, the epidemiological scenarios of the American Trypanosomiasis has shown a dynamic increasing complexity. These scenarios changed with time and geography because of new understandings of the disease from multiple studies, because of policies change at the national and international levels and because human movements brought the parasite and vectors to new geographies. Paradigms that seemed solid at a time were broken down, and we learnt about the global dispersion of Trypanosoma cruzi infection, the multiplicity of transmission routes, that the infection can be cured, and that triatomines are not only a health threat in Latin America. We consider the multiple epidemiological scenarios through the different T. cruzi transmission routes, with or without the participation of a Triatominae vector. We then consider the scenario of regions with vectors without the parasite, to finish with the consideration of future prospects.

9.
Acta Trop ; 224: 106158, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34599887

RESUMO

The epidemiological scenario in central Argentinian Chaco region shows persistence of Triatoma infestans domestic populations in endemic areas, with control interventions historically affected by the economic instability of the region. Considering this situation, we aimed to (i) update the information regarding to the diversity of triatomines present in domestic, peridomestic and sylvatic environments in departments historically endemic of the Chaco region, (ii) to report the occurrence of secondary vectors of Chagas disease invading domestic environments and (iii) to discuss the possible sources of dispersal of these sylvatic species towards anthropic habitats. Between November 2017 and March 2020, we visited fourteen rural communities of northwest Córdoba province (central Argentina). Entomological data were collected through community vector surveillance in domiciles, active search in peridomiciles and the use of light and yeast traps in sylvatic environments. Seven Triatominae species were captured invading domiciles (T. guasayana, T. garciabesi, T. platensis, T. delpontei, T. breyeri, Panstrongylus guentheri and T. infestans). T. guasayana and T. garciabesi were the species with the highest number of captures. The 32% of the peridomiciles registered infestation with T. infestans (n â€‹= 355), mostly in chicken coops and goat pens. In sylvatic environments, T. garciabesi, T. guasayana, T. infestans and P. guentheri were collected. Only one adult specimen of T. infestans was positive for the presence of Trypanosoma cruzi. Our results suggest that the persistence of T. infestans populations in peridomiciles continues to be a serious challenge for control programs, whereas the finding of secondary vectors of Chagas disease actively invading domiciles emphasizes the need to implement new strategies for entomological surveillance.


Assuntos
Doença de Chagas , Triatoma , Triatominae , Trypanosoma cruzi , Animais , Argentina/epidemiologia , Doença de Chagas/epidemiologia , Insetos Vetores
10.
PLoS Negl Trop Dis ; 15(7): e0009579, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34260588

RESUMO

After the decrease of the relative importance of Triatoma infestans, a number of studies reported the occurrence of sylvatic triatomines dispersing actively to domestic environments in the dry western Chaco Region of Argentina. Anthropic modification of the landscape is mentioned as one of the main causes of the increase in domicile invasion. The aim of this study was to describe the occurrence and frequency of sylvatic triatomines invading rural houses, and to evaluate the effect of habitat fragmentation and other ecological factors on the invasion of rural houses in central Argentina. We hypothesized that the decrease in food sources and the loss of wild ecotopes, as a consequence of habitat fragmentation, increase the chances of invasion by triatomines. The entomological data was collected by community-based vector surveillance during fieldwork carried out between 2017-2020, over 131 houses located in fourteen rural communities in the northwest of Córdoba Province (central Argentina). We used generalized linear models to evaluate the effect of (i) the environmental anthropic disturbance in the study area, (ii) the composition and configuration of the landscape surrounding the house, (iii) the spatial arrangement of houses, (iv) and the availability of artificial refuges and domestic animals in the peridomicile, on house invasion by triatomines. We report the occurrence of seven species of triatomines invading rural houses in the study area -T. infestans, T. guasayana, T. garciabesi, T. platensis, T. delpontei, T. breyeri and P. guentheri-. Study data suggest that invasion by triatomines occurs with higher frequency in disturbed landscapes, with houses spatially isolated and in proximity to subdivided fragments of forest. The availability of domestic refuges in the peridomestic structures as well as the presence of a higher number of domestic animals increase the chances of invasion by triatomines.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Habitação , População Rural , Triatominae/fisiologia , Animais , Comportamento Animal , Doença de Chagas/transmissão , Humanos , Insetos Vetores
11.
Medicina (B Aires) ; 81(3): 432-437, 2021.
Artigo em Espanhol | MEDLINE | ID: mdl-34137705

RESUMO

Vector-borne diseases (VBDs) continue to pose a challenge to the efforts of public health agencies by increasing their impact on the health of the affected communities. The common feature of VBDs is that the only way of preventing them is by avoiding the contact between vectors and humans. There are no vaccines, and they will not be available shortly as tools for prevention and control in Argentina. Although dengue outbreaks attracted the attention of mass media from 2009, other VBDs have been affecting public health in Argentina for many decades, as Chagas disease and leishmaniasis. Over these, and others that could potentially settle in the national territory (West Nile, Lyme, etc.), there are repeated mass media claims and political declarations justifying their increase because of climate changes. The argument asserts that the "tropicalization" of the climate in temperate regions promotes the installation of VBDs in areas previously unfavorable for them. Although much evidence exists showing that the climate is changing, there is very little evidence that the climate is the main factor promoting the increase of VBDs. In this article, the influence of the so-called climate change on the situation of disease vectors in Argentina (with emphasis on triatomines) and vector control activities implemented by governmental public health agencies are discussed.


Las enfermedades transmitidas por vectores (ETVs) continúan siendo un desafío para los esfuerzos de agencias de salud pública, ya que mantienen o están aumentando su impacto sobre la salud de las comunidades afectadas. La característica común de las ETVs es que la única manera de prevenir exitosamente nuevas infecciones es evitar el contacto entre vectores y humanos. No existen vacunas y no existirán en un futuro previsible para las principales ETVs que afectan la salud pública en Argentina. Aunque las epidemias de dengue desde 2009 atrajeron la atención mediática, otras ETVs, tales como Chagas o leishmaniasis, afectan la salud pública en Argentina desde hace décadas. Sobre ellas, y otras que potencialmente podrían instalarse en el territorio nacional (West Nile, Lyme, etc) hay repetidas referencias mediáticas que explican su recrudecimiento por el cambio climático. El argumento se basa en que la "tropicalización" del clima en regiones templadas promueve la instalación de ETVs en áreas previamente no favorables para ellas. Aunque existen muchas evidencias de que el clima está cambiando, son pocas las evidencias de que sea el clima el principal factor que promueve el recrudecimiento de las ETVs en Argentina. En este artículo, se discute la situación de los vectores de enfermedades en Argentina (con énfasis en triatominos), su vinculación con el llamado cambio climático y las actividades de control de vectores implementados por agencias gubernamentales de salud pública.


Assuntos
Mudança Climática , Doenças Transmitidas por Vetores , Argentina/epidemiologia , Vetores de Doenças , Humanos , Saúde Pública
12.
Medicina (B.Aires) ; 81(3): 432-437, jun. 2021.
Artigo em Espanhol | LILACS | ID: biblio-1346481

RESUMO

Resumen Las enfermedades transmitidas por vectores (ETVs) continúan siendo un desafío para los esfuerzos de agencias de salud pública, ya que mantienen o están aumentando su impacto sobre la salud de las comunidades afectadas. La característica común de las ETVs es que la única manera de prevenir exito samente nuevas infecciones es evitar el contacto entre vectores y humanos. No existen vacunas y no existirán en un futuro previsible para las principales ETVs que afectan la salud pública en Argentina. Aunque las epide mias de dengue desde 2009 atrajeron la atención mediática, otras ETVs, tales como Chagas o leishmaniasis, afectan la salud pública en Argentina desde hace décadas. Sobre ellas, y otras que potencialmente podrían instalarse en el territorio nacional (West Nile, Lyme, etc) hay repetidas referencias mediáticas que explican su recrudecimiento por el cambio climático. El argumento se basa en que la "tropicalización" del clima en regiones templadas promueve la instalación de ETVs en áreas previamente no favorables para ellas. Aunque existen muchas evidencias de que el clima está cambiando, son pocas las evidencias de que sea el clima el principal factor que promueve el recrudecimiento de las ETVs en Argentina. En este artículo, se discute la situación de los vectores de enfermedades en Argentina (con énfasis en triatominos), su vinculación con el llamado cambio climático y las actividades de control de vectores implementados por agencias gubernamentales de salud pública.


Abstract Vector-borne diseases (VBDs) continue to pose a challenge to the efforts of public health agencies by increasing their impact on the health of the affected communities. The common feature of VBDs is that the only way of preventing them is by avoid ing the contact between vectors and humans. There are no vaccines, and they will not be available shortly as tools for prevention and control in Argentina. Although dengue outbreaks attracted the attention of mass media from 2009, other VBDs have been affecting public health in Argentina for many decades, as Chagas disease and leishmaniasis. Over these, and others that could potentially settle in the national territory (West Nile, Lyme, etc.), there are repeated mass media claims and political declarations justifying their increase because of climate changes. The argument asserts that the "tropicalization" of the climate in temperate regions promotes the instal lation of VBDs in areas previously unfavorable for them. Although much evidence exists showing that the climate is changing, there is very little evidence that the climate is the main factor promoting the increase of VBDs. In this article, the influence of the so-called climate change on the situation of disease vectors in Argentina (with emphasis on triatomines) and vector control activities implemented by governmental public health agencies are discussed.


Assuntos
Humanos , Mudança Climática , Doenças Transmitidas por Vetores , Argentina/epidemiologia , Saúde Pública , Vetores de Doenças
13.
Geospat Health ; 15(1)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32575975

RESUMO

The contribution of the geospatial tools to the vector control activities of Chagas disease is very clear for the academic and technology-prone communities, but not so much for the state-dependent health agents (national or provincial) that are ultimately responsible for disease control in Latin America. (...).


Assuntos
Doença de Chagas , Humanos , América Latina
14.
Parasit Vectors ; 12(1): 478, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31610815

RESUMO

BACKGROUND: Mepraia gajardoi and Mepraia spinolai are endemic triatomine vector species of Trypanosoma cruzi, a parasite that causes Chagas disease. These vectors inhabit arid, semiarid and Mediterranean areas of Chile. Mepraia gajardoi occurs from 18° to 25°S, and M. spinolai from 26° to 34°S. Even though both species are involved in T. cruzi transmission in the Pacific side of the Southern Cone of South America, no study has modelled their distributions at a regional scale. Therefore, the aim of this study is to estimate the potential geographical distribution of M. spinolai and M. gajardoi under current and future climate scenarios. METHODS: We used the Maxent algorithm to model the ecological niche of M. spinolai and M. gajardoi, estimating their potential distributions from current climate information and projecting their distributions to future climatic conditions under representative concentration pathways (RCP) 2.6, 4.5, 6.0 and 8.5 scenarios. Future predictions of suitability were constructed considering both higher and lower public health risk situations. RESULTS: The current potential distributions of both species were broader than their known ranges. For both species, climate change projections for 2070 in RCP 2.6, 4.5, 6.0 and 8.5 scenarios showed different results depending on the methodology used. The higher risk situation showed new suitable areas, but the lower risk situation modelled a net reduction in the future potential distribution areas of M. spinolai and M. gajardoi. CONCLUSIONS: The suitable areas for both species may be greater than currently known, generating new challenges in terms of vector control and prevention. Under future climate conditions, these species could modify their potential geographical range. Preventive measures to avoid accidental human vectorial transmission by wild vectors of T. cruzi become critical considering the uncertainty of future suitable areas projected in this study.


Assuntos
Doença de Chagas/transmissão , Mudança Climática , Insetos Vetores/fisiologia , Triatominae/fisiologia , Trypanosoma cruzi/fisiologia , Animais , Área Sob a Curva , Doença de Chagas/epidemiologia , Chile/epidemiologia , Humanos , Umidade , Insetos Vetores/parasitologia , Modelos Biológicos , Filogeografia , Curva ROC , Chuva , Medição de Risco , Temperatura , Triatominae/parasitologia
15.
PLoS Negl Trop Dis ; 13(2): e0007170, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30768613

RESUMO

BACKGROUND: Trypanosoma cruzi is a protozoan parasite that is transmitted by triatomine vectors to mammals. It is classified in six discrete typing units (DTUs). In Chile, domestic vectorial transmission has been interrupted; however, the parasite is maintained in non-domestic foci. The aim of this study was to describe T. cruzi infection and DTU composition in mammals and triatomines from several non-domestic populations of North-Central Chile and to evaluate their spatio-temporal variations. METHODOLOGY/PRINCIPAL FINDINGS: A total of 710 small mammals and 1140 triatomines captured in six localities during two study periods (summer/winter) of the same year were analyzed by conventional PCR to detect kDNA of T. cruzi. Positive samples were DNA blotted and hybridized with specific probes for detection of DTUs TcI, TcII, TcV, and TcVI. Infection status was modeled, and cluster analysis was performed in each locality. We detected 30.1% of overall infection in small mammals and 34.1% in triatomines, with higher rates in synanthropic mammals and in M. spinolai. We identified infecting DTUs in 45 mammals and 110 triatomines, present more commonly as single infections; the most frequent DTU detected was TcI. Differences in infection rates among species, localities and study periods were detected in small mammals, and between triatomine species; temporally, infection presented opposite patterns between mammals and triatomines. Infection clustering was frequent in vectors, and one locality exhibited half of the 21 clusters found. CONCLUSIONS/SIGNIFICANCE: We determined T. cruzi infection in natural host and vector populations simultaneously in a spatially widespread manner during two study periods. All captured species presented T. cruzi infection, showing spatial and temporal variations. Trypanosoma cruzi distribution can be clustered in space and time. These clusters may represent different spatial and temporal risks of transmission.


Assuntos
Doença de Chagas/parasitologia , Insetos Vetores/parasitologia , Mamíferos/parasitologia , Triatoma/parasitologia , Trypanosoma cruzi/genética , Animais , Doença de Chagas/epidemiologia , Doença de Chagas/transmissão , Chile/epidemiologia , Análise por Conglomerados , Genótipo , Humanos
16.
PLoS One ; 13(8): e0201391, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30071071

RESUMO

Triatoma infestans (Hemiptera: Reduviidae) is a vector of the Trypanosoma cruzi parasite, causative agent of Chagas disease. During the last decade, vector control activities have been systematically carried out in northwestern Argentina, an endemic region for this disease. The general aim of this study to evaluate was spatio-temporal variation of infestation by T. infestans in rural communities of Los Llanos in La Rioja province. We estimated house infestation using two sampling methods: passive and active. Passive collection was conducted with community participation collecting triatomines. Six passive collections were carried out in 397 houses during the warm season between 2014 and 2017. Active collection of T. infestans was thoroughly performed by trained staff for 60 minutes and was carried out once in March 2016. The estimate of intradomestic infestation did not show significant differences between both collection methods (p = 0.39). However, passive collection method had lower sensitivity than active collection method for the estimation of peridomestic infestation and intradomestic colonization (PDI: p< 0.01; ID colonization: p< 0.01). The results obtained with passive collection methods showed that the infestation in the study area was spatially heterogeneous and temporally variable. Intradomiciliary infestation decreased over time (14.4% to 7.9%, p<0.05) although the effect of the chemical treatment application was not associated with the infestation level of T. infestans (p = 0.15) and the Departments had a different response each year (p<0.01). A high infestation cluster was located in the south of our study area during 2016-2017. The vector presence in the houses confirms the importance of to improve entomological surveillance programs. The search for triatomines carried out by the inhabitants might be a useful method to complement the activities of vector control programs in isolated and rural areas.


Assuntos
Doença de Chagas/epidemiologia , Doença de Chagas/transmissão , Bases de Dados Factuais , Habitação , População Rural , Triatoma , Trypanosoma cruzi , Animais , Argentina/epidemiologia , Humanos
17.
Sci Data ; 5: 180071, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29688221

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease, is transmitted to mammals - including humans - by insect vectors of the subfamily Triatominae. We present the results of a compilation of triatomine occurrence and complementary ecological data that represents the most complete, integrated and updated database (DataTri) available on triatomine species at a continental scale. This database was assembled by collecting the records of triatomine species published from 1904 to 2017, spanning all American countries with triatomine presence. A total of 21815 georeferenced records were obtained from published literature, personal fieldwork and data provided by colleagues. The data compiled includes 24 American countries, 14 genera and 135 species. From a taxonomic perspective, 67.33% of the records correspond to the genus Triatoma, 20.81% to Panstrongylus, 9.01% to Rhodnius and the remaining 2.85% are distributed among the other 11 triatomine genera. We encourage using DataTri information in various areas, especially to improve knowledge of the geographical distribution of triatomine species and its variations in time.


Assuntos
Insetos Vetores , Triatominae , Animais , Doença de Chagas/transmissão , Bases de Dados Factuais , Humanos , Trypanosoma cruzi , Estados Unidos
18.
Geospat Health ; 12(2): 564, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29239555

RESUMO

After elimination of the Aedes aegypti vector in South America in the 1960s, dengue outbreaks started to reoccur during the 1990s; strongly in Argentina since 1998. In 2016, Córdoba City had the largest dengue outbreak in its history. In this article we report this outbreak including spatio-temporal analysis of cases and vectors in the city. A total of 653 dengue cases were recorded by the laboratory-based dengue surveillance system and georeferenced by their residential addresses. Case maps were generated from the epidemiological week 1 (beginning of January) to week 19 (mid-May). Dengue outbreak temporal evolution was analysed globally and three specific, high-incidence zones were detected using Knox analysis to characterising its spatio-temporal attributes. Field and remotely sensed data were collected and analysed in real time and a vector presence map based on the MaxEnt approach was generated to define hotspots, towards which the pesticide- based strategy was then targeted. The recorded pattern of cases evolution within the community suggests that dengue control measures should be improved.


Assuntos
Aedes/crescimento & desenvolvimento , Dengue/epidemiologia , Insetos Vetores/crescimento & desenvolvimento , Animais , Argentina/epidemiologia , Humanos , Incidência , Chuva , Análise Espaço-Temporal , Fatores de Tempo
19.
PLoS Negl Trop Dis ; 11(11): e0006035, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29145405

RESUMO

BACKGROUND: Insecticide spraying efficiently controls house infestation by triatomine bugs, the vectors of Trypanosoma cruzi. The strategy, however, is ineffective against sylvatic triatomines, which can transmit Chagas disease by invading (without colonizing) man-made structures. Despite growing awareness of the relevance of these transmission dynamics, the drivers of house invasion by sylvatic triatomines remain poorly understood. METHODS/FINDINGS: About 12,000 sylvatic triatomines were caught during routine surveillance in houses of Tocantins state, Brazil, in 2005-2013. Using negative binomial regression, information-theoretic model evaluation/averaging, and external model validation, we investigated the effects of regional (Amazon/Cerrado), landscape (preservation/disturbance), and climate covariates (temperature, rainfall) on the municipality-aggregated numbers of house-invading Rhodnius pictipes, R. robustus, R. neglectus, and Panstrongylus geniculatus. House invasion by R. pictipes and R. robustus was overall more frequent in the Amazon biome, tended to increase in municipalities with more well-preserved land, and decreased in rainier municipalities. Across species, invasion decreased with higher landscape-disturbance levels and in hotter-day municipalities. Invasion by R. neglectus and P. geniculatus increased somewhat with more land at intermediate disturbance and peaked in average-rainfall municipalities. Temperature effects were more pronounced on P. geniculatus than on Rhodnius spp. CONCLUSIONS: We report widespread, frequent house invasion by sylvatic triatomines in the Amazon-Cerrado transition. Our analyses indicate that readily available environmental metrics may help predict the risk of contact between sylvatic triatomines and humans at coarse geographic scales, and hint at specific hypotheses about climate and deforestation effects on those vectors-with some taxon-specific responses and some seemingly general trends. Thus, our focal species appear to be quite sensitive to higher temperatures, and might be less common in more heavily-disturbed than in better-preserved environments. This study illustrates, in sum, how entomological routine-surveillance data can be efficiently used for Chagas disease risk prediction and stratification when house-colonizing vectors are absent.


Assuntos
Doença de Chagas/epidemiologia , Doença de Chagas/transmissão , Monitoramento Epidemiológico , Habitação , Insetos Vetores/fisiologia , Rhodnius/fisiologia , Animais , Brasil/epidemiologia , Doença de Chagas/parasitologia , Conservação dos Recursos Naturais , Ecossistema , Meio Ambiente , Previsões , Geografia , Humanos , Insetos Vetores/parasitologia , Inseticidas , Governo Local , Densidade Demográfica , Chuva , Rhodnius/parasitologia , Fatores de Risco , Meio Social
20.
Mem Inst Oswaldo Cruz ; 112(11): 760-768, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29091136

RESUMO

BACKGROUND: Triatoma sordida and Triatoma pseudomaculata are frequently captured triatomine species in the Brazilian savannah and caatinga biomes, respectively, and in Brazilian domiciles. OBJECTIVES: This study identified eco-epidemiological changes in Chagas disease in northern Minas Gerais state, Brazil, and considered the influence of environmental shifts and both natural and anthropogenic effects. METHODS: Domicile infestation and Trypanosoma cruzi infection rates were obtained from triatomines and sylvatic reservoirs during the following two time periods: the 1980s and 2007/2008. Entomological and climatic data with land cover classification derived from satellite imagery were integrated into a geographic information system (GIS), which was applied for atmospheric correction, segmentation, image classification, and mapping and to analyse data obtained in the field. Climatic data were analysed and compared to land cover classifications. RESULTS: A comparison of current data with data obtained in the 1980's showed that T. sordida colonised domiciliary areas in both periods, and that T. pseudomaculata did not colonise these areas. There was a tendency toward a reduction in T. cruzi infection rates in sylvatic reservoirs, and of triatomines captured in both households and in the sylvatic environment. T. sordida populations have reduced in the sylvatic environment, while T. pseudomaculata showed an expanding trend in the region compared to counts observed in the 1980's in the sylvatic environment. This may be related to high deforestation rates as well as gradual increases in land surface temperature (LST) and temperatures along the years. MAIN CONCLUSIONS: Our results suggest a geographical expansion of species into new biomes as a result of anthropogenic and climatic changes that directly interfere with the reproductive and infection processes of vectors.


Assuntos
Doença de Chagas/epidemiologia , Ecossistema , Insetos Vetores/classificação , Triatominae/classificação , Animais , Brasil/epidemiologia , Doença de Chagas/transmissão , Monitoramento Epidemiológico , Habitação , Humanos , Densidade Demográfica , Estações do Ano , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...