Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-28739786

RESUMO

Francisella tularensis is the causative agent of tularemia and a potential biowarfare agent. The virulence of F. tularensis is decreased by deletion of guaB, the gene encoding IMP dehydrogenase (IMPDH), suggesting that this enzyme is a target for antibacterial design. Here we report that F. tularensis growth is blocked by inhibitors of bacterial IMPDHs. Seventeen compounds from two different frameworks, designated the D and Q series, display antibacterial activities with MICs of <1 µM. These compounds are also active against intracellular infections. Surprisingly, antibacterial activity does not correlate with IMPDH inhibition. In addition, the presence of guanine does not affect the antibacterial activity of most compounds, nor does the deletion of guaB These observations suggest that antibacterial activity derives from inhibition of another target(s). Moreover, D compounds display antibacterial activity only against F. tularensis, suggesting the presence of a unique target or uptake mechanism. A ΔguaB mutant resistant to compound D73 contained a missense mutation (Gly45Cys) in nuoB, which encodes a subunit of bacterial complex I. Overexpression of the nuoB mutant conferred resistance to D73 in both wild-type and ΔguaB strains. This strain was not resistant to Q compounds, suggesting that a different off-target mechanism operates for these compounds. Several Q compounds are also effective against Mycobacterium tuberculosis, in which a second target has also been implicated, in addition to IMPDH. The fortuitous presence of multiple targets with overlapping structure-activity relationships presents an intriguing opportunity for the development of robust antibiotics that may avoid the emergence of resistance.


Assuntos
Antibacterianos/farmacologia , Benzoxazóis/farmacologia , Francisella tularensis/efeitos dos fármacos , IMP Desidrogenase/antagonistas & inibidores , Ftalazinas/farmacologia , Animais , Linhagem Celular , Complexo I de Transporte de Elétrons/genética , Humanos , IMP Desidrogenase/genética , Camundongos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Tularemia/tratamento farmacológico , Tularemia/microbiologia
2.
PLoS One ; 10(10): e0138976, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26440283

RESUMO

Tuberculosis (TB) remains a worldwide problem and the need for new drugs is increasingly more urgent with the emergence of multidrug- and extensively-drug resistant TB. Inosine 5'-monophosphate dehydrogenase 2 (IMPDH2) from Mycobacterium tuberculosis (Mtb) is an attractive drug target. The enzyme catalyzes the conversion of inosine 5'-monophosphate into xanthosine 5'-monophosphate with the concomitant reduction of NAD+ to NADH. This reaction controls flux into the guanine nucleotide pool. We report seventeen selective IMPDH inhibitors with antitubercular activity. The crystal structures of a deletion mutant of MtbIMPDH2 in the apo form and in complex with the product XMP and substrate NAD+ are determined. We also report the structures of complexes with IMP and three structurally distinct inhibitors, including two with antitubercular activity. These structures will greatly facilitate the development of MtbIMPDH2-targeted antibiotics.


Assuntos
Antituberculosos/farmacologia , IMP Desidrogenase/química , IMP Desidrogenase/metabolismo , Mycobacterium tuberculosis/enzimologia , Antituberculosos/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/farmacologia , IMP Desidrogenase/antagonistas & inibidores , IMP Desidrogenase/genética , Mycobacterium tuberculosis/efeitos dos fármacos , NAD/metabolismo , Ligação Proteica
3.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 5): 531-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25945705

RESUMO

Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment of Cryptosporidium infections. Here, the structure of C. parvum IMPDH (CpIMPDH) in complex with inosine 5'-monophosphate (IMP) and P131, an inhibitor with in vivo anticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO2 moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is a new strategy for the further optimization of C. parvum inhibitors for both antiparasitic and antibacterial applications.


Assuntos
Antiparasitários/química , Cryptosporidium/química , Inibidores Enzimáticos/química , IMP Desidrogenase/química , Sequência de Aminoácidos , Antiparasitários/metabolismo , Cryptosporidium/genética , Cryptosporidium/metabolismo , Inibidores Enzimáticos/metabolismo , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
4.
J Biol Chem ; 290(9): 5893-911, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25572472

RESUMO

The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD(+), which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD(+) and XMP/NAD(+). In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD(+) adenosine moiety. More importantly, this new NAD(+)-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD(+)-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization.


Assuntos
Anti-Infecciosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , IMP Desidrogenase/antagonistas & inibidores , Sequência de Aminoácidos , Anti-Infecciosos/química , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/enzimologia , Bacillus anthracis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Clostridium perfringens/efeitos dos fármacos , Clostridium perfringens/enzimologia , Clostridium perfringens/genética , Cristalografia por Raios X , Inibidores Enzimáticos/química , IMP Desidrogenase/química , IMP Desidrogenase/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
5.
ACS Med Chem Lett ; 5(8): 846-50, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25147601

RESUMO

Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the pivotal step in guanine nucleotide biosynthesis. IMPDH is a target for immunosuppressive, antiviral, and anticancer drugs, but, as of yet, has not been exploited for antimicrobial therapy. We have previously reported potent inhibitors of IMPDH from the protozoan parasite Cryptosporidium parvum (CpIMPDH). Many pathogenic bacteria, including Bacillus anthracis, Staphylococcus aureus, and Listeria monocytogenes, contain IMPDHs that should also be inhibited by these compounds. Herein, we present the structure-activity relationships for the inhibition of B. anthracis IMPDH (BaIMPDH) and antibacterial activity of 140 compounds from five structurally distinct compound series. Many potent inhibitors of BaIMPDH were identified (78% with IC50 ≤ 1 µM). Four compounds had minimum inhibitory concentrations (MIC) of less than 2 µM against B. anthracis Sterne 770. These compounds also displayed antibacterial activity against S. aureus and L. monocytogenes.

6.
Antimicrob Agents Chemother ; 58(3): 1603-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24366728

RESUMO

Cryptosporidium parasites are a major cause of diarrhea and malnutrition in the developing world, a frequent cause of waterborne disease in the developed world, and a potential bioterrorism agent. Currently, available treatment is limited, and Cryptosporidium drug discovery remains largely unsuccessful. As a result, the pharmacokinetic properties required for in vivo efficacy have not been established. We have been engaged in a Cryptosporidium drug discovery program targeting IMP dehydrogenase (CpIMPDH). Here, we report the activity of eight potent and selective inhibitors of CpIMPDH in the interleukin-12 (IL-12) knockout mouse model, which mimics acute human cryptosporidiosis. Two compounds displayed significant antiparasitic activity, validating CpIMPDH as a drug target. The best compound, P131 (250 mg/kg of body weight/day), performed equivalently to paromomycin (2,000 mg/kg/day) when administered in a single dose and better than paromomycin when administered in three daily doses. One compound, A110, appeared to promote Cryptosporidium infection. The pharmacokinetic, uptake, and permeability properties of the eight compounds were measured. P131 had the lowest systemic distribution but accumulated to high concentrations within intestinal cells. A110 had the highest systemic distribution. These observations suggest that systemic distribution is not required, and may be a liability, for in vivo antiparasitic activity. Intriguingly, A110 caused specific alterations in fecal microbiota that were not observed with P131 or vehicle alone. Such changes may explain how A110 promotes parasitemia. Collectively, these observations suggest a blueprint for the development of anticryptosporidial therapy.


Assuntos
Coccidiostáticos/uso terapêutico , Criptosporidiose/tratamento farmacológico , Cryptosporidium parvum/efeitos dos fármacos , IMP Desidrogenase/antagonistas & inibidores , Animais , Células CACO-2/parasitologia , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Humanos , Interleucina-12/genética , Camundongos , Camundongos Endogâmicos C57BL/parasitologia , Camundongos Knockout/parasitologia
7.
J Med Chem ; 56(10): 4028-43, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23668331

RESUMO

Cryptosporidium parvum is an enteric protozoan parasite that has emerged as a major cause of diarrhea, malnutrition, and gastroenteritis and poses a potential bioterrorism threat. C. parvum synthesizes guanine nucleotides from host adenosine in a streamlined pathway that relies on inosine 5'-monophosphate dehydrogenase (IMPDH). We have previously identified several parasite-selective C. parvum IMPDH (CpIMPDH) inhibitors by high-throughput screening. In this paper, we report the structure-activity relationship (SAR) for a series of benzoxazole derivatives with many compounds demonstrating CpIMPDH IC50 values in the nanomolar range and >500-fold selectivity over human IMPDH (hIMPDH). Unlike previously reported CpIMPDH inhibitors, these compounds are competitive inhibitors versus NAD(+). The SAR study reveals that pyridine and other small heteroaromatic substituents are required at the 2-position of the benzoxazole for potent inhibitory activity. In addition, several other SAR conclusions are highlighted with regard to the benzoxazole and the amide portion of the inhibitor, including preferred stereochemistry. An X-ray crystal structure of a representative E·IMP·inhibitor complex is also presented. Overall, the secondary amine derivative 15a demonstrated excellent CpIMPDH inhibitory activity (IC50 = 0.5 ± 0.1 nM) and moderate stability (t1/2 = 44 min) in mouse liver microsomes. Compound 73, the racemic version of 15a, also displayed superb antiparasitic activity in a Toxoplasma gondii strain that relies on CpIMPDH (EC50 = 20 ± 20 nM), and selectivity versus a wild-type T. gondii strain (200-fold). No toxicity was observed (LD50 > 50 µM) against a panel of four mammalian cells lines.


Assuntos
Benzoxazóis/síntese química , Benzoxazóis/farmacologia , Cryptosporidium parvum/enzimologia , IMP Desidrogenase/antagonistas & inibidores , Amidas/síntese química , Amidas/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cryptosporidium parvum/efeitos dos fármacos , Cristalização , Desenho de Fármacos , Meia-Vida , Ensaios de Triagem em Larga Escala , Humanos , Técnicas In Vitro , Indicadores e Reagentes , Cinética , Camundongos , Microssomos Hepáticos/metabolismo , Conformação Molecular , Piridinas/química , Estereoisomerismo , Relação Estrutura-Atividade , Toxoplasma/efeitos dos fármacos
8.
Bioorg Med Chem Lett ; 23(4): 1004-7, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23324406

RESUMO

Cryptosporidium parvum (Cp) is a potential biowarfare agent and major cause of diarrhea and malnutrition. This protozoan parasite relies on inosine 5'-monophosphate dehydrogenase (IMPDH) for the production of guanine nucleotides. A CpIMPDH-selective N-aryl-3,4-dihydro-3-methyl-4-oxo-1-phthalazineacetamide inhibitor was previously identified in a high throughput screening campaign. Herein we report a structure-activity relationship study for the phthalazinone-based series that resulted in the discovery of benzofuranamide analogs that exhibit low nanomolar inhibition of CpIMPDH. In addition, the antiparasitic activity of select analogs in a Toxoplasma gondii model of C. parvum infection is also presented.


Assuntos
Antiparasitários/farmacologia , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/enzimologia , Inibidores Enzimáticos/farmacologia , IMP Desidrogenase/antagonistas & inibidores , Ftalazinas/farmacologia , Criptosporidiose/tratamento farmacológico , Inibidores Enzimáticos/química , Humanos , IMP Desidrogenase/metabolismo , Ftalazinas/química , Relação Estrutura-Atividade
9.
J Med Chem ; 55(17): 7759-71, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22950983

RESUMO

Cryptosporidium parvum and related species are zoonotic intracellular parasites of the intestine. Cryptosporidium is a leading cause of diarrhea in small children around the world. Infection can cause severe pathology in children and immunocompromised patients. This waterborne parasite is resistant to common methods of water treatment and therefore a prominent threat to drinking and recreation water even in countries with strong water safety systems. The drugs currently used to combat these organisms are ineffective. Genomic analysis revealed that the parasite relies solely on inosine-5'-monophosphate dehydrogenase (IMPDH) for the biosynthesis of guanine nucleotides. Herein, we report a selective urea-based inhibitor of C. parvum IMPDH (CpIMPDH) identified by high-throughput screening. We performed a SAR study of these inhibitors with some analogues exhibiting high potency (IC(50) < 2 nM) against CpIMPDH, excellent selectivity >1000-fold versus human IMPDH type 2 and good stability in mouse liver microsomes. A subset of inhibitors also displayed potent antiparasitic activity in a Toxoplasma gondii model.


Assuntos
Cryptosporidium parvum/enzimologia , Inibidores Enzimáticos/farmacologia , IMP Desidrogenase/metabolismo , Ureia/farmacologia , Humanos , IMP Desidrogenase/antagonistas & inibidores , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 22(5): 1985-8, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22310229

RESUMO

Cryptosporidium parasites are important waterborne pathogens of both humans and animals. The Cryptosporidium parvum and Cryptosporidium hominis genomes indicate that the only route to guanine nucleotides is via inosine 5'-monophosphate dehydrogenase (IMPDH). Thus the inhibition of the parasite IMPDH presents a potential strategy for treating Cryptosporidium infections. A selective benzimidazole-based inhibitor of C. parvum IMPDH (CpIMPDH) was previously identified in a high throughput screen. Here we report a structure-activity relationship study of benzimidazole-based compounds that resulted in potent and selective inhibitors of CpIMPDH. Several compounds display potent antiparasitic activity in vitro.


Assuntos
Antiparasitários/química , Antiparasitários/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/enzimologia , IMP Desidrogenase/antagonistas & inibidores , Animais , Antiparasitários/síntese química , Benzimidazóis/síntese química , Criptosporidiose/tratamento farmacológico , Humanos , IMP Desidrogenase/metabolismo , Relação Estrutura-Atividade
11.
Chem Biol ; 17(10): 1084-91, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21035731

RESUMO

The protozoan parasite Cryptosporidium parvum is a major cause of gastrointestinal disease; no effective drug therapy exists to treat this infection. Curiously, C. parvum IMPDH (CpIMPDH) is most closely related to prokaryotic IMPDHs, suggesting that the parasite obtained its IMPDH gene via horizontal transfer. We previously identified inhibitors of CpIMPDH that do not inhibit human IMPDHs. Here, we show that these compounds also inhibit IMPDHs from Helicobacter pylori, Borrelia burgdorferi, and Streptococcus pyogenes, but not from Escherichia coli. Residues Ala165 and Tyr358 comprise a structural motif that defines susceptible enzymes. Importantly, a second-generation CpIMPDH inhibitor has bacteriocidal activity on H. pylori but not E. coli. We propose that CpIMPDH-targeted inhibitors can be developed into a new class of antibiotics that will spare some commensal bacteria.


Assuntos
Inibidores Enzimáticos/química , IMP Desidrogenase/antagonistas & inibidores , Sítios de Ligação , Borrelia burgdorferi/efeitos dos fármacos , Borrelia burgdorferi/enzimologia , Simulação por Computador , Cryptosporidium parvum/enzimologia , Inibidores Enzimáticos/farmacologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/enzimologia , Humanos , IMP Desidrogenase/classificação , IMP Desidrogenase/metabolismo , Cinética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/enzimologia
12.
J Med Chem ; 53(19): 6838-50, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20809634

RESUMO

The enzyme isoprenylcysteine carboxyl methyltransferase (Icmt) plays an important role in the post-translational modification of proteins that are involved in the regulation of cell growth. The indole acetamide cysmethynil is by far the most potent and widely investigated Icmt inhibitor, but it has modest antiproliferative activity and may have pharmacokinetic limitations due to its lipophilic character. We report here that cysmethynil can be structurally modified to give analogues that are as potent in inhibiting Icmt but with significantly greater antiproliferative activity. Key modifications were the replacement of the acetamide side chain by tertiary amino groups, the n-octyl side chain by isoprenyl and the 5-m-tolyl ring by fluorine. Moreover, these analogues have lower lipophilicities that could lead to improved pharmacokinetic profiles.


Assuntos
Aminas/síntese química , Antineoplásicos/síntese química , Indóis/síntese química , Proteínas Metiltransferases/antagonistas & inibidores , Aminas/química , Aminas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/química , Indóis/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
13.
J Am Chem Soc ; 132(4): 1230-1, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20052976

RESUMO

Cryptosporidium parvum is a potential biowarfare agent, an important AIDS pathogen, and a major cause of diarrhea and malnutrition. No vaccines or effective drug treatment exist to combat Cryptosporidium infection. This parasite relies on inosine 5'-monophosphate dehydrogenase (IMPDH) to obtain guanine nucleotides, and inhibition of this enzyme blocks parasite proliferation. Here, we report the first crystal structures of CpIMPDH. These structures reveal the structural basis of inhibitor selectivity and suggest a strategy for further optimization. Using this information, we have synthesized low-nanomolar inhibitors that display 10(3) selectivity for the parasite enzyme over human IMPDH2.


Assuntos
Antiprotozoários/farmacologia , Criptosporidiose/tratamento farmacológico , Cryptosporidium parvum/enzimologia , IMP Desidrogenase/antagonistas & inibidores , IMP Desidrogenase/química , Antiprotozoários/síntese química , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Humanos , IMP Desidrogenase/metabolismo , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...