Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(19): 12142-12153, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32901485

RESUMO

Environmental pollution is a threat to humans and wildlife species. Of particular concern are endocrine disrupting chemicals (EDCs). An important target of EDCs is nuclear receptors (NRs) that control endocrine and metabolic responses through transcriptional regulation. Owing in part to structural differences of NRs, adverse effects of EDCs vary significantly among species. Here, we describe a multiplexed reporter assay (the Ecotox FACTORIAL) enabling parallel assessment of compounds' effects on estrogen, androgen, thyroid, and PPARγ receptors of representative mammals, birds, reptiles, amphibians, and fish. The Ecotox FACTORIAL is a single-well assay comprising a set of species-specific, one-hybrid GAL4-NR reporter constructs transiently transfected into test cells. To harmonize cross-species assessments, we used a combination of two approaches. First, we used the same type of test cells for all reporters; second, we implemented a parallel detection of reporter RNAs. The assay demonstrated excellent quality, reproducibility, and insignificant intra-assay variability. Importantly, the EC50 values for NR ligands were consistent with those reported for conventional assays. Using the assay allowed ranking the hazard potential of environmental pollutants (e.g., bisphenols, polycyclic aromatic hydrocarbons, and synthetic progestins) across species. Furthermore, the assay permitted detecting taxa-specific effects of surface water samples. Therefore, the Ecotox FACTORIAL enables harmonized assessment of the endocrine and metabolic disrupting activity of chemicals and surface water in humans as well as in wildlife species.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Animais , Bioensaio , Disruptores Endócrinos/toxicidade , Sistema Endócrino , Poluentes Ambientais/farmacologia , Humanos , Reprodutibilidade dos Testes
2.
J Thromb Haemost ; 17(4): 670-680, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30698330

RESUMO

Essentials Many mediators increase tissue factor (TF) expression in a wide variety of cell types. The only known example of TF downregulation is by pericytes during wound healing angiogenesis. Downregulation of TF mRNA and protein in cultured pericytes is Protein Kinase C (PKC) dependent. Pericyte TF regulation is unique, since PKC mediates increased TF in all other cell types tested. SUMMARY: Background Embryonic and tumor-associated angiogenesis are linked to elevated expression of the procoagulant transmembrane receptor tissue factor (TF). In contrast, we have reported that high baseline TF expression by perivascular cells (pericytes) is dramatically reduced during angiogenesis at sites of wound healing. This is the only setting in which active TF downregulation has been reported, thus revealing a novel mechanism of TF regulation. Objectives To define the mechanisms underlying the unique pattern of TF expression in pericytes. Methods TF expression in primary cultures of human pericytes is not altered by angiogenic cytokines or growth factors, but is actively downregulated by phorbol 12-myristate 13-acetate (PMA). We characterized TF transcription, protein stability and trafficking in response to PMA. Results Exposure to PMA reduced TF mRNA synthesis and shortened the half-life of TF protein from 11 h to 4.5 h. Addition of PMA rapidly triggered endocytosis of cell surface TF, followed by degradation in lysosomes. Cell surface TF coagulant activity was maintained until internal stores were depleted. Reduction of TF transcription, TF endocytosis and enhanced degradation of TF protein were all blocked by broad-spectrum inhibitors of protein kinase C (PKC). This was a surprising finding, because PKC activation increases TF expression in other cell types that have been tested. Conclusions The unique PKC-dependent pathway of TF downregulation in pericytes suggests that TF downregulation may play a functional role in angiogenesis. Distinct pathways regulating pathological and physiological TF expression could be utilized to modulate TF expression for therapeutic purposes.


Assuntos
Pericitos/enzimologia , Placenta/irrigação sanguínea , Proteína Quinase C/metabolismo , Tromboplastina/metabolismo , Regulação para Baixo , Endocitose , Ativação Enzimática , Estabilidade Enzimática , Feminino , Humanos , Lisossomos/enzimologia , Pericitos/efeitos dos fármacos , Gravidez , Proteólise , Transdução de Sinais , Acetato de Tetradecanoilforbol/farmacologia , Tromboplastina/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...