Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5336, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914549

RESUMO

Transition metal chalcogenides have been identified as low-cost and efficient electrocatalysts to promote the hydrogen evolution reaction in alkaline media. However, the identification of active sites and the underlying catalytic mechanism remain elusive. In this work, we employ operando X-ray absorption spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy to elucidate that NiS undergoes an in-situ phase transition to an intimately mixed phase of Ni3S2 and NiO, generating highly active synergistic dual sites at the Ni3S2/NiO interface. The interfacial Ni is the active site for water dissociation and OH* adsorption while the interfacial S acts as the active site for H* adsorption and H2 evolution. Accordingly, the in-situ formation of Ni3S2/NiO interfaces enables NiS electrocatalysts to achieve an overpotential of only 95 ± 8 mV at a current density of 10 mA cm-2. Our work highlighted that the chemistry of transition metal chalcogenides is highly dynamic, and a careful control of the working conditions may lead to the in-situ formation of catalytic species that boost their catalytic performance.

2.
ACS Appl Mater Interfaces ; 15(46): 53382-53394, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37950688

RESUMO

Photocatalytic nitrogen fixation to ammonia and nitrates holds great promise as a sustainable route powered by solar energy and fed with renewable energy resources (N2 and H2O). This technology is currently under deep investigation to overcome the limited efficiency of the process. The rational design of efficient and robust photocatalysts is crucial to boost the photocatalytic performance. Widely used bulk materials generally suffer from charge recombination due to poor interfacial charge transfer and difficult surface diffusion. To overcome this limitation, this work explores the use of aqueous-dispersed colloidal semiconductor nanocrystals (NCs) with precise morphological control, better carrier mobility, and stronger redox ability. Here, the TiO2 framework has been modified via aliovalent molybdenum doping, and resulting Mo-TiO2 NCs have been functionalized with charged terminating hydroxyl groups (OH-) for the simultaneous production of ammonia, nitrites, and nitrates via photocatalytic nitrogen reduction in water, which has not been previously found in the literature. Our results demonstrate the positive effect of Mo-doping and nanostructuration on the overall N2 fixation performance. Ammonia production rates are found to be dependent on the Mo-doping loading. 5Mo-TiO2 delivers the highest NH4+ yield rate (ca. 105.3 µmol g-1 L-1 h-1) with an outstanding 90% selectivity, which is almost four times higher than that obtained over bare TiO2. The wide range of advance characterization techniques used in this work reveals that Mo-doping enhances charge-transfer processes and carriers lifetime as a consequence of the creation of new intra band gap states in Mo-doped TiO2 NCs.

3.
Biotechnol J ; 18(10): e2300173, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37337924

RESUMO

Magnetosomes are magnetite nanoparticles biosynthesized by magnetotactic bacteria. Given their potential clinical applications for the diagnosis and treatment of cancer, it is essential to understand what becomes of them once they are within the body. With this aim, here we have followed the intracellular long-term fate of magnetosomes in two cell types: cancer cells (A549 cell line), because they are the actual target for the therapeutic activity of the magnetosomes, and macrophages (RAW 264.7 cell line), because of their role at capturing foreign agents. It is shown that cells dispose of magnetosomes using three mechanisms: splitting them into daughter cells, excreting them to the surrounding environment, and degrading them yielding less or non-magnetic iron products. A deeper insight into the degradation mechanisms by means of time-resolved X-ray absorption near-edge structure (XANES) spectroscopy has allowed us to follow the intracellular biotransformation of magnetosomes by identifying and quantifying the iron species occurring during the process. In both cell types there is a first oxidation of magnetite to maghemite and then, earlier in macrophages than in cancer cells, ferrihydrite starts to appear. Given that ferrihydrite is the iron mineral phase stored in the cores of ferritin proteins, this suggests that cells use the iron released from the degradation of magnetosomes to load ferritin. Comparison of both cellular types evidences that macrophages are more efficient at disposing of magnetosomes than cancer cells, attributed to their role in degrading external debris and in iron homeostasis.


Assuntos
Magnetossomos , Neoplasias , Magnetossomos/química , Ferro/metabolismo , Ferritinas/análise , Ferritinas/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo
4.
J Am Chem Soc ; 144(36): 16262-16266, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35960870

RESUMO

A novel synthetic approach is described for the targeted preparation of multivariate metal-organic frameworks (MTV-MOFs) with specific combinations of metal elements. This methodology is based on the use of molecular complexes that already comprise desired metal-atom combinations, as building units for the MTV-MOF synthesis. These units are transformed into the MOF structural constituents through a ligand/linker exchange process that involves structural modifications while preserving their originally encoded atomic combination. Thus, through the use of heterometallic ring-shaped molecules combining gallium and nickel or cobalt, we have obtained MOFs with identical combinations of the metal elements, now incorporated in the rod-shaped secondary building unit, as confirmed with a combination of X-ray and electron diffraction, electron microscopy, and X-ray absorption spectroscopy techniques.


Assuntos
Gálio , Estruturas Metalorgânicas , Cobalto , Gálio/química , Ligantes , Estruturas Metalorgânicas/química , Níquel
5.
Artigo em Inglês | MEDLINE | ID: mdl-35849480

RESUMO

The present study proposes a laser irradiation method to superficially reduce BiVO4 photoelectrodes and boost their water oxidation reaction performance. The origin of this enhanced performance toward oxygen evolution reaction (OER) was studied using a combination of a suite of structural, chemical, and mechanistic advanced characterization techniques including X-ray photoelectron (XPS), X-ray absorption spectroscopy (XAS), electrochemical impedance spectroscopy (EIS), and transient absorption spectroscopy (TAS), among others. We found that the reduction of the material is localized at the surface of the sample and that this effect creates effective n-type doping and a shift to more favorable energy band positions toward water oxidation. This thermodynamic effect, together with the change in sample morphology to larger and denser domains, results in an extended lifetime of the photogenerated carriers and improved charge extraction. In addition, the stability of the reduced sample in water was also confirmed. All of these effects result in a two-fold increase in the photocurrent density of the laser-treated samples.

6.
Inorg Chem ; 61(30): 11886-11896, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35857923

RESUMO

Deep-UV (180-280 nm) phosphors have attracted tremendous interest in tri-band-based white light-emitting diode (LED) technology, bio- and photochemistry, as well as various medical fields. However, the application of many UV-emitting materials has been hindered due to their poor thermal or chemical stability, complex synthesis, and environmental harmfulness. A particular concern is posed by the utilization of rare earths affected by rising price and depletion of natural resources. As a consequence, the development of phosphors without rare-earth elements represents an important challenge. In this work, as a potential UV-C phosphor, undoped ZnAl2O4 fibers have been synthesized by a cost-efficient wet chemical route. The rare-earth-free ZnAl2O4 nanofibers exhibit a strong UV emission with two bands peaking at 5.4 eV (230 nm) and 4.75 eV (261 nm). The emission intensity can be controlled by tuning the Zn/Al ratio. A structure-property relationship has been thoroughly studied to understand the origin of the UV emission. For this reason, ZnAl2O4 nanofibers have been analyzed by X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), X-ray diffraction (XRD), and Raman spectroscopy techniques showing that a normal spinel structure of the synthesized material is preserved within a wide range of Zn/Al ratios. The experimental evidence of a strong and narrow band at 7.04 eV in the excitation spectrum of the 5.4 eV emission suggests its excitonic nature. Moreover, the 4.75 eV emission is shown to be related to excitons perturbed by lattice defects, presumably oxygen or cation vacancies. These findings shed light on the design of UV-C emission devices for sterilization based on a rare-earth-free phosphor, providing a feasible alternative to the conventional phosphors doped with rare-earth elements.

7.
Nanomaterials (Basel) ; 10(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708192

RESUMO

Transparent oxyfluoride glass-ceramics containing NaGdF4 nanocrystals were prepared by melt-quenching and doped with Er3+ (0.5 mol%) and different amounts of Yb3+ (0-2 mol%). The selected dopant concentration the crystallization thermal treatments were chosen to obtain the most efficient visible up-conversion emissions, together with near infrared emissions. The crystal size increased with dopant content and treatment time. NaGdF4 NCs with a size ranging 9-30 nm were obtained after heat treatments at Tg + 20-80 °C as confirmed by X-ray diffraction and high-resolution transmission electron microscopy. Energy dispersive X-ray analysis shows the incorporation of rare earth ions into the NaGdF4 nanocrystals. Near-infrared emission spectra, together with the up-conversion emissions were measured. The optical characterization of the glass-ceramics clearly shows that Er3+ and Yb3+ ions are incorporated in the crystalline phase. Moreover, visible up-conversion emissions could be tuned by controlling the nanocrystals size through appropriated heat treatment, making possible a correlation between structural and optical properties.

8.
Nanomaterials (Basel) ; 9(4)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987125

RESUMO

Transparent oxyfluoride glass-ceramic films and self-supported layers with composition 80SiO2-20LaF3 doped with Er3+ have been successfully synthesized by sol-gel process for the first time. Crack-free films and self-supported layer with a maximum thickness up to 1.4 µm were obtained after heat treatment at the low temperature of 550 °C for 1 min, resulting in a LaF3 crystal fraction of 18 wt%, as confirmed by quantitative Rietveld refinement. This is the highest value reported up to now for transparent oxyfluoride glass-ceramics prepared by sol-gel. This work provides a new synthesis strategy and opens the way to a wide range of potential applications of oxyfluoride glass-ceramics. The characterization by a wide range of techniques revealed the homogeneous precipitation of LaF3 nanocrystals into the glass matrix. X-ray absorption spectroscopy and electron paramagnetic resonance confirmed that the Er3+ ions are preferentially embedded in the low phonon-energy LaF3 nanocrystals. Moreover, photoluminescence (PL) measurements confirmed the incorporation of dopants in the LaF3 nanocrystals. The effective concentration of rare-earth ions in the LaF3 nanocrystals is also estimated by X-ray absorption spectroscopy.

9.
Materials (Basel) ; 11(2)2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29385706

RESUMO

Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF4 glass-ceramics. Moreover, a new SiO2 precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...