Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 1623, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944332

RESUMO

The original version of this Article contained an error in the first sentence of the Acknowledgements, which incorrectly read 'This publication was supported by Contract HR0011-15-C-0055 (DODOS) from the Defense Advanced Research Projects Agency (DARPA), Defense Sciences Office (DSO).' The correct version states 'Microsystems Technology Office (MTO)' in place of 'Defense Sciences Office (DSO)'. This has been corrected in both the PDF and HTML versions of the Article.

2.
Phys Rev Lett ; 122(1): 013902, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012679

RESUMO

Continuous-wave-driven Kerr nonlinear microresonators give rise to self-organization in terms of dissipative Kerr solitons, which constitute optical frequency combs that can be used to generate low-noise microwave signals. Here, by applying either amplitude or phase modulation to the driving laser we create an intracavity potential trap to discipline the repetition rate of the solitons. We demonstrate that this effect gives rise to a novel spectral purification mechanism of the external microwave signal frequency, leading to reduced phase noise of the output signal. We experimentally observe that the microwave signal generated from disciplined solitons is injection locked by the external drive at long timescales, but exhibits an unexpected suppression of the fast timing jitter. Counterintuitively, this filtering takes place for frequencies that are substantially lower than the cavity decay rate. As a result, while the long timescale stability of the Kerr frequency comb's repetition rate is improved by more than 4 orders of magnitude, the purified microwave signal shows a reduction of the phase noise by 30 dB at offset frequencies above 10 kHz.

3.
Nat Commun ; 10(1): 680, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737384

RESUMO

Microcombs provide a path to broad-bandwidth integrated frequency combs with low power consumption, which are compatible with wafer-scale fabrication. Yet, electrically-driven, photonic chip-based microcombs are inhibited by the required high threshold power and the frequency agility of the laser for soliton initiation. Here we demonstrate an electrically-driven soliton microcomb by coupling a III-V-material-based (indium phosphide) multiple-longitudinal-mode laser diode chip to a high-Q silicon nitride microresonator fabricated using the photonic Damascene process. The laser diode is self-injection locked to the microresonator, which is accompanied by the narrowing of the laser linewidth, and the simultaneous formation of dissipative Kerr solitons. By tuning the laser diode current, we observe transitions from modulation instability, breather solitons, to single-soliton states. The system operating at an electronically-detectable sub-100-GHz mode spacing requires less than 1 Watt of electrical power, can fit in a volume of ca. 1 cm3, and does not require on-chip filters and heaters, thus simplifying the integrated microcomb.

4.
Science ; 361(6402)2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30093576

RESUMO

The development of compact, chip-scale optical frequency comb sources (microcombs) based on parametric frequency conversion in microresonators has seen applications in terabit optical coherent communications, atomic clocks, ultrafast distance measurements, dual-comb spectroscopy, and the calibration of astophysical spectrometers and have enabled the creation of photonic-chip integrated frequency synthesizers. Underlying these recent advances has been the observation of temporal dissipative Kerr solitons in microresonators, which represent self-enforcing, stationary, and localized solutions of a damped, driven, and detuned nonlinear Schrödinger equation, which was first introduced to describe spatial self-organization phenomena. The generation of dissipative Kerr solitons provide a mechanism by which coherent optical combs with bandwidth exceeding one octave can be synthesized and have given rise to a host of phenomena, such as the Stokes soliton, soliton crystals, soliton switching, or dispersive waves. Soliton microcombs are compact, are compatible with wafer-scale processing, operate at low power, can operate with gigahertz to terahertz line spacing, and can enable the implementation of frequency combs in remote and mobile environments outside the laboratory environment, on Earth, airborne, or in outer space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...