Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0299198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635661

RESUMO

Herpesviruses have two distinct life cycle stages, latency and lytic replication. Epstein-Barr virus (EBV), a gamma-herpesvirus, establishes latency in vivo and in cultured cells. Cell lines harboring latent EBV can be induced into the lytic cycle by treatment with chemical inducing agents. In the Burkitt lymphoma cell line HH514-16 the viral lytic cycle is triggered by butyrate, a histone deacetylase (HDAC) inhibitor. Butyrate also alters expression of thousands of cellular genes. However, valproic acid (VPA), another HDAC inhibitor with global effects on cellular gene expression blocks EBV lytic gene expression in Burkitt lymphoma cell lines. Valpromide (VPM), an amide derivative of VPA, is not an HDAC inhibitor, but like VPA blocks induction of the EBV lytic cycle. VPA and VPM are the first examples of inhibitors of initial stages of lytic reactivation. We compared the effects of VPA and VPM, alone and in combination with butyrate, on host cellular gene expression using whole transcriptome analysis (RNA-seq). Gene expression was analyzed 6 h after addition of the compounds, a time before the first EBV lytic transcripts are detected. The results address two alternative, yet possibly complementary, mechanisms for regulation of EBV lytic reactivation. First, cellular genes that were up- or down-regulated by butyrate, but no longer altered in the presence of VPA or VPM, represent genes that correlated with EBV lytic reactivation. Second, genes regulated similarly by VPA and VPM in the absence and presence of butyrate are candidates for suppressors of EBV reactivation. Two genes upregulated by the lytic cycle inhibitors, CHAC1 and SLC7A11, are related to redox status and the iron-dependent cell death pathway ferroptosis. This study generates new hypotheses for control of the latency to lytic cycle switch of EBV and provides the first description of effects of the anti-convulsant drug VPM on global human cellular gene expression.


Assuntos
Linfoma de Burkitt , Infecções por Vírus Epstein-Barr , Ácido Valproico/análogos & derivados , Humanos , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Herpesvirus Humano 4/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/metabolismo , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Ativação Viral , Perfilação da Expressão Gênica , Butiratos/farmacologia
2.
Viruses ; 11(5)2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108875

RESUMO

Epstein-Barr virus (EBV), a member of the Herpesviridae family, maintains a lifelong latent infection in human B cells. Switching from the latent to the lytic phase of its lifecycle allows the virus to replicate and spread. The viral lytic cycle is induced in infected cultured cells by drugs such as sodium butyrate and azacytidine. Lytic reactivation can be inhibited by natural products and pharmaceuticals. The anticonvulsant drugs valproic acid and valpromide inhibit EBV in Burkitt lymphoma cells. Therefore, other drugs that treat neurological and psychological disorders were investigated for effects on EBV lytic reactivation. Clozapine, an atypical antipsychotic drug used to treat schizophrenia and bipolar disorder, was found to inhibit the reactivation of the EBV lytic cycle. Levels of the viral lytic genes BZLF1, BRLF1, and BMLF1 were decreased by treatment with clozapine in induced Burkitt lymphoma cells. The effects on viral gene expression were dependent on the dose of clozapine, yet cells were viable at an inhibitory concentration of clozapine. One metabolite of clozapine-desmethylclozapine-also inhibited EBV lytic reactivation, while another metabolite-clozapine-N-oxide-had no effect. These drugs may be used to study cellular pathways that control the viral lytic switch in order to develop treatments for diseases caused by EBV.


Assuntos
Antipsicóticos/antagonistas & inibidores , Clozapina/antagonistas & inibidores , Herpesvirus Humano 4/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Linfoma de Burkitt , Linhagem Celular Tumoral , Clozapina/análogos & derivados , Clozapina/química , Relação Dose-Resposta a Droga , Infecções por Vírus Epstein-Barr/virologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Herpesvirus Humano 4/genética , Humanos , Proteínas Imediatamente Precoces/metabolismo , Fosfoproteínas/metabolismo , Transativadores/metabolismo , Ativação Viral/efeitos dos fármacos , Latência Viral/genética
3.
Virology ; 499: 121-135, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27657833

RESUMO

Cytomegalovirus (CMV) infection can generate debilitating disease in immunocompromised individuals and neonates. It is also the most common infectious cause of congenital birth defects in infected fetuses. Available anti-CMV drugs are partially effective but are limited by some toxicity, potential viral resistance, and are not recommended for fetal exposure. Valproate, valpromide, and valnoctamide have been used for many years to treat epilepsy and mood disorders. We report for the first time that, in contrast to the virus-enhancing actions of valproate, structurally related valpromide and valnoctamide evoke a substantial and specific inhibition of mouse and human CMV in vitro. In vivo, both drugs safely attenuate mouse CMV, improving survival, body weight, and developmental maturation of infected newborns. The compounds appear to act by a novel mechanism that interferes with CMV attachment to the cell. Our work provides a novel potential direction for CMV therapeutics through repositioning of agents already approved for use in psychiatric disorders.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/fisiologia , Tranquilizantes/farmacologia , Amidas/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/mortalidade , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Muromegalovirus/efeitos dos fármacos , Muromegalovirus/fisiologia , Tranquilizantes/uso terapêutico , Ácido Valproico/análogos & derivados , Ácido Valproico/farmacologia , Carga Viral , Replicação Viral/efeitos dos fármacos
4.
mBio ; 7(2): e00113, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26933051

RESUMO

UNLABELLED: Reactivation of Epstein-Barr virus (EBV) from latency into the lytic phase of its life cycle allows the virus to spread among cells and between hosts. Valproic acid (VPA) inhibits initiation of the lytic cycle in EBV-infected B lymphoma cells. While VPA blocks viral lytic gene expression, it induces expression of many cellular genes, because it is a histone deacetylase (HDAC) inhibitor. Here we show, using derivatives of VPA, that blockade of EBV reactivation is separable from HDAC inhibition. Valpromide (VPM), an amide derivative of valproic acid that is not an HDAC inhibitor, prevented expression of two EBV genes, BZLF1 and BRLF1, that mediate lytic reactivation. VPM also inhibited expression of a viral late gene, but not early genes, when BZLF1 was exogenously expressed. Unlike VPA, VPM did not activate lytic expression of Kaposi's sarcoma-associated herpesvirus. Expression of cellular immediate-early genes, such as FOS and EGR1, is kinetically upstream of the EBV lytic cycle. VPM did not activate expression of these cellular immediate-early genes but decreased their level of expression when induced by butyrate, an HDAC inhibitor. VPM did not alter expression of several other cellular immediate-early genes, including STAT3, which were induced by the HDAC inhibitors in cells refractory to lytic induction. Therefore, VPM selectively inhibits both viral and cellular gene expression. VPA and VPM represent a new class of antiviral agents. The mechanism by which VPA and VPM block EBV reactivation may be related to their anticonvulsant activity. IMPORTANCE: Epstein-Barr virus, (EBV), a human tumor virus, establishes a life-long latent infection. Reactivation of EBV into the lytic phase of its life cycle allows the virus to spread. Previously, we showed that EBV reactivation was blocked by valproic acid (VPA), an inhibitor of cellular histone deacetylases (HDACs). VPA alters the expression of thousands of cellular genes. In this study, we demonstrate that valpromide (VPM), an amide derivative of valproic acid that is not an HDAC inhibitor, prevented initiation of the EBV lytic cycle. VPA induced lytic reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV), but VPM did not. Unlike VPA, VPM did not activate cellular immediate-early gene expression. VPM is a new type of antiviral agent. VPM will be useful in probing the mechanism of EBV lytic reactivation and may have therapeutic application.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/fisiologia , Ácido Valproico/análogos & derivados , Ativação Viral/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/virologia , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Transativadores/antagonistas & inibidores , Ácido Valproico/farmacologia
5.
J Virol ; 88(14): 8028-44, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24807711

RESUMO

The lytic cycles of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are induced in cell culture by sodium butyrate (NaB), a short-chain fatty acid (SCFA) histone deacetylase (HDAC) inhibitor. Valproic acid (VPA), another SCFA and an HDAC inhibitor, induces the lytic cycle of KSHV but blocks EBV lytic reactivation. To explore the hypothesis that structural differences between NaB and VPA account for their functional effects on the two related viruses, we investigated the capacity of 16 structurally related short- and medium-chain fatty acids to promote or prevent lytic cycle reactivation. SCFAs differentially affected EBV and KSHV reactivation. KSHV was reactivated by all SCFAs that are HDAC inhibitors, including phenylbutyrate. However, several fatty acid HDAC inhibitors, such as isobutyrate and phenylbutyrate, did not reactivate EBV. Reactivation of KSHV lytic transcripts could not be blocked completely by any fatty acid tested. In contrast, several medium-chain fatty acids inhibited lytic activation of EBV. Fatty acids that blocked EBV reactivation were more lipophilic than those that activated EBV. VPA blocked activation of the BZLF1 promoter by NaB but did not block the transcriptional function of ZEBRA. VPA also blocked activation of the DNA damage response that accompanies EBV lytic cycle activation. Properties of SCFAs in addition to their effects on chromatin are likely to explain activation or repression of EBV. We concluded that fatty acids stimulate the two related human gammaherpesviruses to enter the lytic cycle through different pathways. Importance: Lytic reactivation of EBV and KSHV is needed for persistence of these viruses and plays a role in carcinogenesis. Our direct comparison highlights the mechanistic differences in lytic reactivation between related human oncogenic gammaherpesviruses. Our findings have therapeutic implications, as fatty acids are found in the diet and produced by the human microbiota. Small-molecule inducers of the lytic cycle are desired for oncolytic therapy. Inhibition of viral reactivation, alternatively, may prove useful in cancer treatment. Overall, our findings contribute to the understanding of pathways that control the latent-to-lytic switch and identify naturally occurring molecules that may regulate this process.


Assuntos
Ácidos Graxos/metabolismo , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 8/fisiologia , Ativação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/virologia , Linhagem Celular , Herpesvirus Humano 4/crescimento & desenvolvimento , Herpesvirus Humano 8/crescimento & desenvolvimento , Inibidores de Histona Desacetilases/metabolismo , Humanos
6.
Crit Rev Biochem Mol Biol ; 45(2): 106-24, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20199358

RESUMO

Posttranslational modifications can cause profound changes in protein function. Typically, these modifications are reversible, and thus provide a biochemical on-off switch. In contrast, proline residues are the substrates for an irreversible reaction that is the most common posttranslational modification in humans. This reaction, which is catalyzed by prolyl 4-hydroxylase (P4H), yields (2S,4R)-4-hydroxyproline (Hyp). The protein substrates for P4Hs are diverse. Likewise, the biological consequences of prolyl hydroxylation vary widely, and include altering protein conformation and protein-protein interactions, and enabling further modification. The best known role for Hyp is in stabilizing the collagen triple helix. Hyp is also found in proteins with collagen-like domains, as well as elastin, conotoxins, and argonaute 2. A prolyl hydroxylase domain protein acts on the hypoxia inducible factor alpha, which plays a key role in sensing molecular oxygen, and could act on inhibitory kappaB kinase and RNA polymerase II. P4Hs are not unique to animals, being found in plants and microbes as well. Here, we review the enzymic catalysts of prolyl hydroxylation, along with the chemical and biochemical consequences of this subtle but abundant posttranslational modification.


Assuntos
Pró-Colágeno-Prolina Dioxigenase/química , Animais , Colágeno/metabolismo , Humanos , Hidroxilação , Hidroxiprolina/biossíntese , Pró-Colágeno-Prolina Dioxigenase/fisiologia , Prolina/metabolismo , Processamento de Proteína Pós-Traducional , Especificidade da Espécie , Especificidade por Substrato
7.
PLoS One ; 4(11): e7635, 2009 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19890397

RESUMO

The non-heme iron(II) dioxygenase family of enzymes contain a common 2-His-1-carboxylate iron-binding motif. These enzymes catalyze a wide variety of oxidative reactions, such as the hydroxylation of aliphatic C-H bonds. Prolyl 4-hydroxylase (P4H) is an alpha-ketoglutarate-dependent iron(II) dioxygenase that catalyzes the post-translational hydroxylation of proline residues in protocollagen strands, stabilizing the ensuing triple helix. Human P4H residues His412, Asp414, and His483 have been identified as an iron-coordinating 2-His-1-carboxylate motif. Enzymes that catalyze oxidative halogenation do so by a mechanism similar to that of P4H. These halogenases retain the active-site histidine residues, but the carboxylate ligand is replaced with a halide ion. We replaced Asp414 of P4H with alanine (to mimic the active site of a halogenase) and with glycine. These substitutions do not, however, convert P4H into a halogenase. Moreover, the hydroxylase activity of D414A P4H cannot be rescued with small molecules. In addition, rearranging the two His and one Asp residues in the active site eliminates hydroxylase activity. Our results demonstrate a high stringency for the iron-binding residues in the P4H active site. We conclude that P4H, which catalyzes an especially demanding chemical transformation, is recalcitrant to change.


Assuntos
Ácido Aspártico/química , Histidina/química , Pró-Colágeno-Prolina Dioxigenase/química , Alanina/química , Motivos de Aminoácidos , Carbono/química , Catálise , Domínio Catalítico , Colágeno/química , Glicina/química , Heme/química , Humanos , Hidrogênio/química , Ferro/química , Ligantes
8.
Biochemistry ; 48(36): 8664-71, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19653655

RESUMO

The DUF1094 family contains over 100 bacterial proteins, all containing a conserved CXC motif, with unknown function. We solved the crystal structure of the Bacillus subtilis representative, the product of the yphP gene. The protein shows remarkable structural similarity to thioredoxins, with a canonical alphabetaalphabetaalphabetabetaalpha topology, despite low amino acid sequence identity to thioredoxin. The CXC motif is found in the loop immediately downstream of the first beta-strand, in a location equivalent to the CXXC motif of thioredoxins, with the first Cys occupying a position equivalent to the first Cys in canonical thioredoxin. The experimentally determined reduction potential of YphP is E degrees' = -130 mV, significantly higher than that of thioredoxin and consistent with disulfide isomerase activity. Functional assays confirmed that the protein displays a level of isomerase activity that might be biologically significant. We propose a mechanism by which the members of this family catalyze isomerization using the CXC catalytic site.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Domínio Catalítico/fisiologia , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/fisiologia , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico/genética , Sequência Conservada/genética , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Isomerismo , Dados de Sequência Molecular , Família Multigênica , Mutagênese Sítio-Dirigida , Isomerases de Dissulfetos de Proteínas/genética , Alinhamento de Sequência , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Tiorredoxinas/fisiologia
9.
Anal Biochem ; 386(2): 181-5, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19111518

RESUMO

Prolyl 4-hydroxylase (P4H) is a nonheme iron dioxygenase that catalyzes the posttranslational hydroxylation of (2S)-proline (Pro) residues in protocollagen strands. The resulting (2S,4R)-4-hydroxyproline (Hyp) residues are essential for the folding, secretion, and stability of the collagen triple helix. P4H uses alpha-ketoglutarate and O2 as cosubstrates, and forms succinate and CO2 as well as Hyp. Described herein is the first assay for P4H that continuously and directly detects turnover of the proline-containing substrate. This assay is based on (2S,4S)-4-fluoroproline (flp), a proline analogue that is transformed into (2S)-4-ketoproline (Kep) and inorganic fluoride by P4H. The fluoride ion, and thus turnover by P4H, is detected by a fluoride ion-selective electrode. Using this assay, steady-state kinetic parameters for the human P4H-catalyzed turnover of a flp-containing peptide were determined and found to be comparable to those obtained with a discontinuous HPLC-based assay. In addition, this assay can be used to characterize P4H variants, as demonstrated by a comparison of catalysis by D414A P4H and the wild-type enzyme. Finally, the use of the assay to identify small-molecule inhibitors of P4H was verified by an analysis of catalysis in the presence of 2,4-pyridine dicarboxylate, an analogue of alpha-ketoglutarate. Thus, the assay described herein could facilitate biochemical analyses of this essential enzyme.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Pró-Colágeno-Prolina Dioxigenase/análise , Bioensaio , Humanos , Hidroxilação , Cinética , Prolina/análogos & derivados , Prolina/química , Especificidade por Substrato
10.
Biochemistry ; 47(36): 9447-55, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18702512

RESUMO

Prolyl 4-hydroxylase (P4H) catalyzes the posttranslational hydroxylation of (2 S)-proline (Pro) residues in procollagen strands. The resulting (2 S,4 R)-4-hydroxyproline (Hyp) residues are essential for the folding, secretion, and stability of the collagen triple helix. Even though its product (Hyp) differs from its substrate (Pro) by only a single oxygen atom, no product inhibition has been observed for P4H. Here, we examine the basis for the binding and turnover of substrates by human P4H. Synthetic peptides containing (2 S,4 R)-4-fluoroproline (Flp), (2 S,4 S)-4-fluoroproline (flp), (2 S)-4-ketoproline (Kep), (2 S)-4-thiaproline (Thp), and 3,5-methanoproline (Mtp) were evaluated as substrates for P4H. Peptides containing Pro, flp, and Thp were found to be excellent substrates for P4H, forming Hyp, Kep, and (2 S,4 R)-thiaoxoproline, respectively. Thus, P4H is tolerant to some substitutions on C-4 of the pyrrolidine ring. In contrast, peptides containing Flp, Kep, or Mtp did not even bind to the active site of P4H. Each proline analogue that does bind to P4H is also a substrate, indicating that discrimination occurs at the level of binding rather than turnover. As the iron(IV)-oxo species that forms in the active site of P4H is highly reactive, P4H has an imperative for forming a snug complex with its substrate and appears to do so. Most notably, those proline analogues with a greater preference for a C (gamma)- endo pucker and cis peptide bond were the ones recognized by P4H. As Hyp has a strong preference for C (gamma)- exo pucker and trans peptide bond, P4H appears to discriminate against the conformation of proline residues in a manner that diminishes product inhibition during collagen biosynthesis.


Assuntos
Peptídeos/química , Pró-Colágeno-Prolina Dioxigenase/química , Pró-Colágeno/química , Humanos , Hidroxilação , Hidroxiprolina/química , Hidroxiprolina/metabolismo , Peptídeos/metabolismo , Pró-Colágeno/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Ligação Proteica/fisiologia , Dobramento de Proteína , Estrutura Quaternária de Proteína , Especificidade por Substrato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...