Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(1): 012504, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23383785

RESUMO

The MuCap experiment at the Paul Scherrer Institute has measured the rate Λ(S) of muon capture from the singlet state of the muonic hydrogen atom to a precision of 1%. A muon beam was stopped in a time projection chamber filled with 10-bar, ultrapure hydrogen gas. Cylindrical wire chambers and a segmented scintillator barrel detected electrons from muon decay. Λ(S) is determined from the difference between the µ(-) disappearance rate in hydrogen and the free muon decay rate. The result is based on the analysis of 1.2 × 10(10) µ(-) decays, from which we extract the capture rate Λ(S) = (714.9 ± 5.4(stat) ± 5.1(syst)) s(-1) and derive the proton's pseudoscalar coupling g(P)(q(0)(2) = -0.88 m(µ)(2)) = 8.06 ± 0.55.

2.
Phys Rev Lett ; 106(4): 041803, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21405320

RESUMO

We report a measurement of the positive muon lifetime to a precision of 1.0 ppm; it is the most precise particle lifetime ever measured. The experiment used a time-structured, low-energy muon beam and a segmented plastic scintillator array to record more than 2×10(12) decays. Two different stopping target configurations were employed in independent data-taking periods. The combined results give τ(µ(+)) (MuLan)=2 196 980.3(2.2) ps, more than 15 times as precise as any previous experiment. The muon lifetime gives the most precise value for the Fermi constant: G(F) (MuLan)=1.166 378 8(7)×10(-5) GeV(-2) (0.6 ppm). It is also used to extract the µ(-)p singlet capture rate, which determines the proton's weak induced pseudoscalar coupling g(P).

3.
Phys Rev Lett ; 101(10): 102301, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18851210

RESUMO

We report measurements of the pi;{-}p-->pi;{0}n differential cross sections at six momenta (104-143 MeV/c) and four angles (0 degrees -40 degrees ) by detection of gamma-ray pairs from pi;{0}-->gammagamma decays using a photon-pair spectrometer at TRIUMF. This kinematic region exhibits a vanishing zero-degree cross section from destructive interference between s and p waves, thus yielding special sensitivity to pion-nucleon dynamics. Our data and previous data do not agree, with important implications for earlier claims of large isospin-violating effects.

4.
Phys Rev Lett ; 99(3): 032001, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17678280

RESUMO

The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, tau(micro)=2.197 013(24) micros, is in excellent agreement with the previous world average. The new world average tau(micro)=2.197 019(21) micros determines the Fermi constant G(F)=1.166 371(6)x10(-5) GeV-2 (5 ppm). Additionally, the precision measurement of the positive-muon lifetime is needed to determine the nucleon pseudoscalar coupling g(P).

5.
Phys Rev Lett ; 99(3): 032002, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17678281

RESUMO

The rate of nuclear muon capture by the proton has been measured using a new technique based on a time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas, which is key to avoiding uncertainties from muonic molecule formation. The capture rate from the hyperfine singlet ground state of the microp atom was obtained from the difference between the micro(-) disappearance rate in hydrogen and the world average for the micro(+) decay rate, yielding Lambda(S)=725.0+/-17.4 s(-1), from which the induced pseudoscalar coupling of the nucleon, g(P)(q(2)=-0.88m(2)(micro))=7.3+/-1.1, is extracted.

6.
Phys Rev Lett ; 96(7): 073401, 2006 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16606087

RESUMO

We report a measurement of the ortho-para transition rate in the p mu p molecule. The experiment was conducted at TRIUMF via the measurement of the time dependence of the 5.2 MeV neutrons from muon capture in liquid hydrogen. The measurement yielded an ortho-para rate Lambda op = (11.1 +/- 1.7 +/-(0.9)(0.6)) x 10(4) s(-1), which is substantially larger than the earlier result of Bardin et al. The result has striking implications for the proton's induced pseudoscalar coupling g(p), changing the value of g(p) obtained from the most precise ordinary muon capture measurement from 10.6 +/- 2.7 to 0.8 +/- 2.8, and from the sole radiative muon capture measurement from 12.2 +/- 1.1 to 10.6 +/- 1.2, bringing the latter result closer to theoretical predictions.

7.
Phys Rev Lett ; 89(25): 252501, 2002 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-12484878

RESUMO

We report the first observation of double radiative capture on pionic hydrogen. The experiment was conducted at the TRIUMF cyclotron using the RMC spectrometer and detected gamma-ray coincidences following pi(-) stops in liquid hydrogen. We found the branching ratio for double radiative capture to be [3.05+/-0.27(stat)+/-0.31(syst)]x10(-5). The measured branching ratio and angle-energy distributions support the theoretical prediction of a dominant contribution from the pipi-->gammagamma annihilation mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...