Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569424

RESUMO

In this study, we analyzed the transcriptomes of RNA and DNA viruses from the oligotrophic water of Lake Baikal and the effluent from wastewater treatment plants (WWTPs) discharged into the lake from the towns of Severobaikalsk and Slyudyanka located on the lake shores. Given the uniqueness and importance of Lake Baikal, the issues of biodiversity conservation and the monitoring of potential virological hazards to hydrobionts and humans are important. Wastewater treatment plants discharge treated effluent directly into the lake. In this context, the identification and monitoring of allochthonous microorganisms entering the lake play an important role. Using high-throughput sequencing methods, we found that dsDNA-containing viruses of the class Caudoviricetes were the most abundant in all samples, while Leviviricetes (ssRNA(+) viruses) dominated the treated water samples. RNA viruses of the families Nodaviridae, Tombusviridae, Dicitroviridae, Picobirnaviridae, Botourmiaviridae, Marnaviridae, Solemoviridae, and Endornavirida were found in the pelagic zone of three lake basins. Complete or nearly complete genomes of RNA viruses belonging to such families as Dicistroviridae, Marnaviridae, Blumeviridae, Virgaviridae, Solspiviridae, Nodaviridae, and Fiersviridae and the unassigned genus Chimpavirus, as well as unclassified picorna-like viruses, were identified. In general, the data of sanitary/microbiological and genetic analyses showed that WWTPs inadequately purify the discharged water, but, at the same time, we did not observe viruses pathogenic to humans in the pelagic zone of the lake.


Assuntos
Vírus de RNA , Vírus , Humanos , Lagos/microbiologia , Águas Residuárias , RNA-Seq , Vírus de RNA/genética , Água
2.
Medicina (Kaunas) ; 58(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36556912

RESUMO

Background and Objectives: Candida albicans causes various diseases ranging from superficial mycoses to life-threatening systemic infections often associated with biofilm formation, including mixed fungal−bacterial consortia. The biofilm matrix protects cells, making Candida extremely resistant to treatment. Here, we show that the bovhyaluronidase azoximer (Longidaza®) in vitro destroys the biofilm formed by either C. albicans alone or mixed with bacteria, this way decreasing the concentrations of antimicrobials required for the pathogen's eradication. Materials and Methods: Bovhyaluronidase azoximer, Longidaza® was obtained from NPO Petrovax Pharm Ltd., Moscow, Russia as lyophilized powder. The antifungal activity was assessed by microdilution assay and CFUs counting. Antibiofilm activity was evaluated via biofilms staining and scanning electron microscopy. Results: Thus, treatment with Longidaza® reduced the biofilm biomass of nine C. albicans clinical isolates by 30−60%, while mixed biofilms of C. albicans with various bacteria were destroyed by 30−40%. Furthermore, the concentration of fluconazole required to achieve a similar reduction of the residual respiratory activity of detached cell clumps of four C. albicans isolates has been reduced four-fold when combined with Longidaza®. While in the biofilm, two of four isolates became significantly more susceptible to fluconazole in combination with Longidaza®. Conclusion: Taken together, our data indicate that Longidaza® is capable of suppression of tissues and artificial surfaces biofouling by C. albicans biofilms, as well as facilitating drug penetration into the cell clumps, this way decreasing the effective MIC of antifungals.


Assuntos
Antifúngicos , Candida albicans , Hialuronoglucosaminidase , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Fluconazol/farmacologia , Hialuronoglucosaminidase/farmacologia , Polímeros/farmacologia
3.
Microorganisms ; 10(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36296212

RESUMO

This article characterises viral fraction metatranscriptomes (smaller than 0.2 µm) from the pelagic zone of oligotrophic Lake Baikal (Russia). The study revealed the dominance of transcripts of DNA viruses: bacteriophages and algal viruses. We identified transcripts similar to Pithovirus sibericum, a nucleocytoplasmic large DNA virus (NCLDV) isolated from the permafrost region of Eastern Siberia. Among the families detected were RNA viruses assigned to Retroviridae, Metaviridae, Potyviridae, Astroviridae, and Closteroviridae. Using the PHROG, SEED subsystems databases, and the VOGDB, we indicated that the bulk of transcripts belong to the functional replication of viruses. In a comparative unweighted pair group method with arithmetic mean (UPGMA) analysis, the transcripts from Lake Baikal formed a separate cluster included in the clade with transcripts from other freshwater lakes, as well as marine and oceanic waters, while there was no separation based on the trophic state of the water bodies, the size of the plankton fraction, or salinity.

4.
Pharmaceutics ; 13(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834156

RESUMO

While in a biofilm, bacteria are extremely resistant to both antimicrobials and the immune system, leading to the development of chronic infection. Here, we show that bovine hyaluronidase fused with a copolymer of 1,4-ethylenepiperazine N-oxide and (N-carboxymethyl) -1,4-ethylenepiperazinium bromide (Longidaza®) destroys both mono- and dual-species biofilms formed by various bacteria. After 4 h of treatment with 750 units of the enzyme, the residual biofilms of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae preserved about 50-70% of their initial mass. Biomasses of dual-species biofilms formed by S. aureus and the four latter species were reduced 1.5-fold after 24 h treatment, while the significant destruction of S. aureus-P. aeruginosa and S. aureus-K. pneumoniae was also observed after 4 h of treatment with Longidaza®. Furthermore, when applied in combination, Longidaza® increased the efficacy of various antimicrobials against biofilm-embedded bacteria, although with various increase-factor values depending on both the bacterial species and antimicrobials chosen. Taken together, our data indicate that Longidaza® destroys the biofilm structure, facilitating the penetration of antimicrobials through the biofilm, and in this way improving their efficacy, lowering the required dose and thus also potentially reducing the associated side effects.

5.
Materials (Basel) ; 14(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34832160

RESUMO

Mesoporous polymer networks were prepared via the cross-linking radical copolymerization of non-toxic hydrophilic N-vinylpyrrolidone (VP) with triethylene glycol dimethacrylate (TEGDM) and poly(ethylene glycol) methyl ester methacrylate (PEGMMA) in bulk, using appropriate soluble and thermodynamically compatible macromolecular additives with a branched structure as porogens. The branched copolymers of various monomer compositions were obtained by radical copolymerization in toluene, controlled by 1-decanethiol, and these materials were characterized by a wide set of physical chemical methods. The specific surface areas and surface morphology of the polymer networks were determined by nitrogen low-temperature adsorption or Rose Bengal (RB) sorption, depending on the copolymer compositions and scanning electron microscopy. The electrochemical properties of RB before and after its encapsulation into a branched VP copolymer were studied on a glassy carbon electrode and the interaction between these substances was observed. Quantum chemical modeling of RB-VP or RB-copolymer complexes has been carried out and sufficiently strong hydrogen bonds were found in these systems. The experimental and modeling data demonstrate the high potency of such mesoporous polymer networks as precursors of molecularly imprinted polymers for the recognition of fluorescent dyes as nanomarkers for biomedical practice.

6.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638693

RESUMO

Pseudomonas phage MD8 is a temperate phage isolated from the freshwater lake Baikal. The organisation of the MD8 genome resembles the genomes of lambdoid bacteriophages. However, MD8 gene and protein sequences have little in common with classified representatives of lambda-like phages. Analysis of phage genomes revealed a group of other Pseudomonas phages related to phage MD8 and the genomic layout of MD8-like phages indicated extensive gene exchange involving even the most conservative proteins and leading to a high degree of genomic mosaicism. Multiple horizontal transfers and mosaicism of the genome of MD8, related phages and other λ-like phages raise questions about the principles of taxonomic classification of the representatives of this voluminous phage group. Comparison and analysis of various bioinformatic approaches applied to λ-like phage genomes demonstrated different efficiency and contradictory results in the estimation of genomic similarity and relatedness. However, we were able to make suggestions for the possible origin of the MD8 genome and the basic principles for the taxonomic classification of lambdoid phages. The group comprising 26 MD8-related phages was proposed to classify as two close genera belonging to a big family of λ-like phages.


Assuntos
Bacteriófago lambda , Genes Virais , Fagos de Pseudomonas , Bacteriófago lambda/classificação , Bacteriófago lambda/genética , Fagos de Pseudomonas/classificação , Fagos de Pseudomonas/genética
7.
Microorganisms ; 9(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920057

RESUMO

The diversity of aerobic anoxygenic phototrophs (AAPs) and rhodopsin-containing bacteria in the surface microlayer, water column, and epilithic biofilms of Lake Baikal was studied for the first time, employing pufM and rhodopsin genes, and compared to 16S rRNA diversity. We detected pufM-containing Alphaproteobacteria (orders Rhodobacterales, Rhizobiales, Rhodospirillales, and Sphingomonadales), Betaproteobacteria (order Burkholderiales), Gemmatimonadetes, and Planctomycetes. Rhodobacterales dominated all the studied biotopes. The diversity of rhodopsin-containing bacteria in neuston and plankton of Lake Baikal was comparable to other studied water bodies. Bacteroidetes along with Proteobacteria were the prevailing phyla, and Verrucomicrobia and Planctomycetes were also detected. The number of rhodopsin sequences unclassified to the phylum level was rather high: 29% in the water microbiomes and 22% in the epilithon. Diversity of rhodopsin-containing bacteria in epilithic biofilms was comparable with that in neuston and plankton at the phyla level. Unweighted pair group method with arithmetic mean (UPGMA) and non-metric multidimensional scaling (NMDS) analysis indicated a distinct discrepancy between epilithon and microbial communities of water (including neuston and plankton) in the 16S rRNA, pufM and rhodopsin genes.

8.
Viruses ; 12(7)2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635178

RESUMO

Bacteriophage PaBG is a jumbo Myoviridae phage isolated from water of Lake Baikal. This phage has limited diffusion ability and thermal stability and infects a narrow range of Pseudomonas aeruginosa strains. Therefore, it is hardly suitable for phage therapy applications. However, the analysis of the genome of PaBG presents a number of insights into the evolutionary history of this phage and jumbo phages in general. We suggest that PaBG represents an ancient group distantly related to all known classified families of phages.


Assuntos
Fagos de Pseudomonas/isolamento & purificação , Pseudomonas aeruginosa/virologia , Genoma Viral , Especificidade de Hospedeiro , Filogenia , Fagos de Pseudomonas/classificação , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/fisiologia , Pseudomonas aeruginosa/fisiologia
9.
Genome Announc ; 2(1)2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24407628

RESUMO

The novel giant Pseudomonas aeruginosa bacteriophage PaBG was isolated from a water sample of the ultrafreshwater Lake Baikal. We report the complete genome sequence of this Myoviridae bacteriophage, comprising 258,139 bp of double-stranded DNA containing 308 predicted open reading frames.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...