Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Biomolecules ; 13(12)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136649

RESUMO

Myostatin (growth differentiation factor 8) is a member of the transforming growth factor-ß superfamily. It is secreted mostly by skeletal muscles, although small amounts of myostatin are produced by the myocardium and the adipose tissue as well. Myostatin binds to activin IIB membrane receptors to activate the downstream intracellular canonical Smad2/Smad3 pathway, and additionally acts on non-Smad (non-canonical) pathways. Studies on transgenic animals have shown that overexpression of myostatin reduces the heart mass, whereas removal of myostatin has an opposite effect. In this review, we summarize the potential diagnostic and prognostic value of this protein in heart-related conditions. First, in myostatin-null mice the left ventricular internal diameters along with the diastolic and systolic volumes are larger than the respective values in wild-type mice. Myostatin is potentially secreted as part of a negative feedback loop that reduces the effects of the release of growth-promoting factors and energy reprogramming in response to hypertrophic stimuli. On the other hand, both human and animal data indicate that myostatin is involved in the development of the cardiac cachexia and heart fibrosis in the course of chronic heart failure. The understanding of the role of myostatin in such conditions might initiate a development of targeted therapies based on myostatin signaling inhibition.


Assuntos
Músculo Esquelético , Miostatina , Camundongos , Humanos , Animais , Miostatina/genética , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Transdução de Sinais , Proteínas/metabolismo
2.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686357

RESUMO

Endothelial (EL) and lipoprotein (LPL) lipases are enzymes involved in lipoproteins metabolism and formation of atherosclerosis, a pathological feature of coronary artery disease (CAD). This paper examines the role of the lipases in the right atrial appendage (RAA) and coronary perivascular adipose tissue (PVAT) of patients with CAD alone or with accompanying diabetes. Additionally, correlation analysis for plasma concentration of the lipases, apolipoproteins (ApoA-ApoJ) and blood lipids (Chol, HDL-C, LDL-C, TAG) was performed. We observed that CAD had little effect on the lipases gene/protein levels in the RAA, while their transcript content was elevated in the PVAT of diabetic CAD patients. Interestingly, the RAA was characterized by higher expression of EL/LPL (EL: +1-fold for mRNA, +5-fold for protein; LPL: +2.8-fold for mRNA, +12-fold for protein) compared to PVAT. Furthermore, ApoA1 plasma concentration was decreased, whereas ApoC1 and ApoH were increased in the patients with CAD and/or diabetes. The concentrations of ApoC3 and ApoD were strongly positively correlated with TAG content in the blood, and the same was true for ApoB with respect to LDL-C and total cholesterol. Although plasma concentrations of EL/LPL were elevated in the patients with diabetes, CAD alone had little effect on blood, myocardial and perivascular fat expression of the lipases.


Assuntos
Fibrilação Atrial , Doença da Artéria Coronariana , Diabetes Mellitus , Humanos , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/genética , Lipase Lipoproteica/genética , LDL-Colesterol , Miocárdio , Átrios do Coração , Lipase
3.
Antioxidants (Basel) ; 12(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36830059

RESUMO

Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.

4.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675139

RESUMO

A mild and efficient protocol for the synthesis of p-quinols under aqueous conditions was developed. The pivotal role of additives in the copper-catalyzed addition of aryl boronic and heteroaryl boronic acids to benzoquinones was observed. It was found that polyvinylpyrrolidone (PVP) was the most efficient additive used for the studied reaction. The noteworthy advantages of this procedure include its broad substrate scope, high yields up to 91%, atom economy, and usage of readily available starting materials. Another benefit of this method is the reusability of the catalytic system up to four times. Further, the obtained p-quinols were characterized on the basis of their antimicrobial activities against E. coli. Antimicrobial activity was further compared with the corresponding 4-benzoquinones and 4-hydroquinones. Among tested compounds, seven derivatives showed an antimicrobial activity profile similar to that observed for commonly used antibiotics such as ciprofloxacin, bleomycin, and cloxacillin. In addition, the obtained p-quinols constitute a suitable platform for further modifications, allowing for a convenient change in their biological activity profile.


Assuntos
Cobre , Hidroquinonas , Cobre/farmacologia , Cobre/química , Escherichia coli , Ácidos Borônicos/farmacologia , Ácidos Borônicos/química , Benzoquinonas , Antibacterianos/farmacologia , Catálise
5.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955950

RESUMO

An enzymatic route for phosphorous-carbon bond formation was developed by discovering new promiscuous activity of lipase. We reported a new metal-free biocatalytic method for the synthesis of pharmacologically relevant ß-phosphonomalononitriles via a lipase-catalyzed one-pot Knoevenagel-phospha-Michael reaction. We carefully analyzed the best conditions for the given reaction: the type of enzyme, temperature, and type of solvent. A series of target compounds was synthesized, with yields ranging from 43% to 93% by enzymatic reaction with Candida cylindracea (CcL) lipase as recyclable and, a few times, reusable catalyst. The advantages of this protocol are excellent yields, mild reaction conditions, low costs, and sustainability. The applicability of the same catalyst in the synthesis of ß-phosphononitriles is also described. Further, the obtained compounds were validated as new potential antimicrobial agents with characteristic E. coli bacterial strains. The pivotal role of such a group of phosphonate derivatives on inhibitory activity against selected pathogenic E. coli strains was revealed. The observed results are especially important in the case of the increasing resistance of bacteria to various drugs and antibiotics. The impact of the ß-phosphono malonate chemical structure on antimicrobial activity was demonstrated. The crucial role of the substituents attached to the aromatic ring on the inhibitory action against selected pathogenic E. coli strains was revealed. Among tested compounds, four ß-phosphonate derivatives showed an antimicrobial activity profile similar to that obtained with currently used antibiotics such as ciprofloxacin, bleomycin, and cloxacillin. In addition, the obtained compounds constitute a convenient platform for further chemical functionalization, allowing for a convenient change in their biological activity profile. It should also be noted that the cost of the compounds obtained is low, which may be an attractive alternative to the currently used antimicrobial agents. The observed results are especially important because of the increasing resistance of bacteria to various drugs and antibiotics.


Assuntos
Anti-Infecciosos , Organofosfonatos , Antibacterianos/farmacologia , Catálise , Escherichia coli , Lipase/química
6.
Molecules ; 27(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889218

RESUMO

Chiral amines and alcohols are synthons of numerous pharmaceutically-relevant compounds. The previously developed enzymatic kinetic resolution approaches utilize a chiral racemic molecule and achiral acyl donor (or acyl acceptor). Thus, only one enantiodivergent step of the catalytic cycle is engaged, which does not fully exploit the enzyme's abilities. The first carbonate-mediated example of simultaneous double chemoselective kinetic resolution of chiral amines and alcohols is described. Herein, we established a biocatalytic approach towards four optically-pure compounds (>99% ee, Enantioselectivity: E > 200) via double enzymatic kinetic resolution, engaging chiral organic carbonates as acyl donors. High enantioselectivity was ensured by extraordinary chemoselectivity in lipase-catalyzed formation of unsymmetrical organic carbonates and engaged in a process applicable for the synthesis of enantiopure organic precursors of valuable compounds. This study focused not only on preparative synthesis, but additionally the catalytic mechanism was discussed and the clear impact of this rarely observed carbonate-derived acyl enzyme was shown. The presented protocol is characterized by atom efficiency, acyl donor sustainability, easy acyl group removal, mild reaction conditions, and biocatalyst recyclability, which significantly decreases the cost of the reported process.


Assuntos
Álcoois , Aminas , Biocatálise , Carbonatos , Cinética , Lipase/metabolismo , Estereoisomerismo
7.
Materials (Basel) ; 15(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35683150

RESUMO

We reported a new method dealing with the synthesis of novel pharmacologically relevant α-aminophosphonate derivatives via a lipase-catalyzed Kabachnik−Fields reaction with yields of up to 93%. The advantages of this protocol are excellent yields, mild reaction conditions, low costs, and sustainability. The developed protocol is applicable to a range of H-phosphites and organic amines, providing a wide substrate scope. A new class of α-aminophosphonate analogues possessing P-chiral centers was also synthesized. The synthesized compounds were characterized on the basis of their antimicrobial activities against E. coli. The impact of the various alkoxy groups on antimicrobial activity was demonstrated. The crucial role of the substituents, located at the aromatic rings in the phenylethyloxy and benzyloxy groups, on the inhibitory action against selected pathogenic E. coli strains was revealed. The observed results are especially important because of increasing resistance of bacteria to various drugs and antibiotics.

8.
Bioorg Chem ; 124: 105815, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35512419

RESUMO

The novel biocatalytic method for the synthesis of pharmaceutically relevant N-unsubstituted amidines was presented. The application of whole cells from commonly available vegetables allowed for the chemoselective reduction of the amidoxime moiety in the presence of other substituents prone to reduction or dehalogenation e.g. carbon-carbon double bond. Under optimized conditions several amidines were obtained with high yield up to 97% in aqueous medium at ambient temperature and atmospheric pressure. The practical potential of the newly developed method was shown in the preparative synthesis of anti-parasitic drug, phenamidine. Moreover, for the first time the enantioselective bioreduction of chiral racemic amidoximes to the corresponding amidines has been shown. The developed sustainable biocatalytic protocol fulfils the green chemistry rules and no application of metal catalysts meets the strict requirements of the pharmaceutical industry regarding metal contamination.


Assuntos
Oxirredutases , Saccharomyces cerevisiae , Amidinas/química , Biocatálise , Carbono , Oxirredutases/metabolismo , Oximas , Raízes de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estereoisomerismo
9.
Materials (Basel) ; 15(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35269205

RESUMO

An enzymatic route for phosphorous-carbon- bond formation is developed by discovering new promiscuous activity of lipase. This biocatalytic transformation of phosphorous-carbon- bond addition leads to biologically and pharmacologically relevant α-acyloxy phosphonates with methyl group in α-position. A series of target compounds were synthesized with yields ranging from 54% to 83% by enzymatic reaction with Candida cylindracea (CcL) lipase via Markovnikov addition of H-phosphites to vinyl esters. We carefully analyzed the best conditions for the given reaction such as the type of enzyme, temperature, and type of solvent. The developed protocol is applicable to a range of H-phosphites and vinyl esters significantly simplifying the preparation of synthetically challenging α-pivaloyloxy phosphonates. Further, the obtained compounds were validated as new potential antimicrobial drugs with characteristic E. coli bacterial strains and DNA modification recognized by the Fpg protein, N-methyl purine glycosylases as new substrates. The impact of the methyl group located in the α-position of the studied α-acyloxy phosphonates on the antimicrobial activity was demonstrated. The pivotal role of this group on inhibitory activity against selected pathogenic E. coli strains was revealed. The observed results are especially important in the case of the increasing resistance of bacteria to various drugs and antibiotics.

10.
Materials (Basel) ; 14(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34947169

RESUMO

The biological research on newly synthesized amidoximes, Boc-protected amidoximes and Boc-derived amidines, obtained by a reduction of the parent amidoximes is reported, herein. Due to the presence of a free amino group in both amidines and amidoximes, these compounds can undergo various chemical reactions such as N-alkylation and N-acylation. One such reaction is Boc-protection, often used in organic synthesis to protect the amino and imino groups. Until now, Boc-protected amidoximes have not been tested for biological activity. Amidoxime derivatives were tested on bacterial E. coli strains. Initial cellular studies tests and digestion with Fpg after the modification of bacterial DNA, suggest that these compounds may have greater potential as antibacterial agents compared to antibiotics such as ciprofloxacin (ci), bleomycin (b) and cloxacillin (cl). The described compounds are highly specific for pathogenic E. coli strains on the basis of the model strains used and may be used in the future as new substitutes for commonly used antibiotics in clinical and hospital infections in the pandemic era.

11.
Biomolecules ; 11(6)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204548

RESUMO

Endothelial lipase (EL) is an enzyme capable of HDL phospholipids hydrolysis. Its action leads to a reduction in the serum high-density lipoprotein concentration, and thus, it exerts a pro-atherogenic effect. This study examines the impact of a single bout exercise on the gene and protein expression of the EL in skeletal muscles composed of different fiber types (the soleus-mainly type I, the red gastrocnemius-mostly IIA, and the white gastrocnemius-predominantly IIX fibers), as well as the diaphragm, and the heart. Wistar rats were subjected to a treadmill run: (1) t = 30 [min], V = 18 [m/min]; (2) t = 30 [min], V = 28 [m/min]; (3) t = 120 [min], V = 18 [m/min] (designated: M30, F30, and M120, respectively). We established EL expression in the total muscle homogenates in sedentary animals. Resting values could be ordered with the decreasing EL protein expression as follows: endothelium of left ventricle > diaphragm > red gastrocnemius > right ventricle > soleus > white gastrocnemius. Furthermore, we observed that even a single bout of exercise was capable of inducing changes in the mRNA and protein level of EL, with a clearer pattern observed for the former. After 30 min of running at either exercise intensity, the expression of EL transcript in all the cardiovascular components of muscles tested, except the soleus, was reduced in comparison to the respective sedentary control. The protein content of EL varied with the intensity and/or duration of the run in the studied whole tissue homogenates. The observed differences between EL expression in vascular beds of muscles may indicate the muscle-specific role of the lipase.


Assuntos
Endotélio Vascular/enzimologia , Regulação da Expressão Gênica , Lipase/biossíntese , Músculo Estriado/enzimologia , Condicionamento Físico Animal , Corrida , Animais , Masculino , Ratos , Ratos Wistar
12.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137990

RESUMO

Both positive and negative aspects of sport performance are currently considered. The aim of our study was to determine time- and intensity-dependent effects of a single exercise bout on redox and inflammatory status. The experiment was performed on 40 male Wistar rats subjected to treadmill running for 30 min with the speed of 18 m/min (M30) or 28 m/min (F30), or for 2 h with the speed of 18 m/min (M120). Immunoenzymatic and spectrophotometric methods were applied to assess the levels of pro-inflammatory and anti-inflammatory cytokines, chemokines, growth factors, the antioxidant barrier, redox status, oxidative damage products, nitrosative stress, and their relationships with plasma non-esterified fatty acids. Treadmill running caused a reduction in the content of monocyte chemoattractant protein-1 (MCP1) and nitric oxide (M30, M120, F30 groups) as well as macrophage inflammatory protein-1α (MIP-1α) and regulated on activation, normal T-cell expressed and secreted (RANTES) (M30, F30 groups). We also demonstrated an increase in catalase activity as well as higher levels of reduced glutathione, advanced oxidation protein products, lipid hydroperoxides, malondialdehyde (M30, M120, F30 groups), and advanced glycation end products (F30 group). The presented findings showed the activation of antioxidative defense in response to increased reactive oxygen species' production after a single bout of exercise, but it did not prevent oxidative damage of macromolecules.


Assuntos
Antioxidantes/metabolismo , Biomarcadores/sangue , Quimiocinas/sangue , Citocinas/sangue , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Condicionamento Físico Animal , Animais , Teste de Esforço , Masculino , Oxirredução , Estresse Oxidativo , Ratos , Ratos Wistar
13.
Anal Bioanal Chem ; 412(29): 8145-8153, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32968852

RESUMO

Over the past few years, superparamagnetic iron oxide nanoparticles (SPIONs) have attracted much attention due to their medicinally attractive properties and their possible application in cancer diagnosis and therapy. However, there is still a lack of appropriate methods to enable quantitative monitoring of the particle changes in a physiological environment, which could be beneficial for evaluating their in vitro and in vivo behavior. For this reason, the main goal of this study was the development of a novel capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS/MS) method for the determination of SPIONs suitable for the future examination of their changes upon incubation with proteins under simulated physiological conditions. The type and flow rate of the collision/reaction gas were chosen with the aim of simultaneous monitoring of Fe and S. The type and concentration of the background electrolyte, applied voltage, and sample loading were optimized to obtain SPION signals of the highest intensity and minimum half-width of the peak. Analytical parameters were at a satisfactory level: reproducibility (intra- and inter-day) of migration times and peak areas (presented as RSD) in the range of 0.23-4.98%, recovery: 96.7% and 93.3%, the limit of detection (for monitoring 56Fe16O+ by mass-shift approach) 54 ng mL-1 Fe (0.97 µM) and 101 ng mL-1 Fe (1.82 µM) for SPIONs with carboxyl and amino terminal groups, respectively. To the best of our knowledge, this is the first reported use of CE-ICP-MS/MS for the quantification of SPIONs and monitoring of interactions with proteins.


Assuntos
Eletroforese Capilar/métodos , Compostos Férricos/química , Nanopartículas Metálicas/química , Espectrometria de Massas em Tandem/métodos , Proteínas Sanguíneas/química , Humanos , Limite de Detecção , Reprodutibilidade dos Testes
14.
Int J Mol Sci ; 21(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979197

RESUMO

The aim of our study was to examine the regulation of triacylglycerols (TG) metabolism in myocardium and heart perivascular adipose tissue in coronary atherosclerosis. Adipose triglyceride lipase (ATGL) is the major TG-hydrolase. The enzyme is activated by a protein called comparative gene identification 58 (CGI-58) and inhibited by a protein called G0/G1 switch protein 2 (G0S2). Samples of the right atrial appendage and perivascular adipose tissue were obtained from two groups of patients: 1-with multivessel coronary artery disease qualified for coronary artery bypass grafting (CAD), 2-patients with no atherosclerosis qualified for a valve replacement (NCAD). The mRNA and protein analysis of ATGL, HSL, CGI-58, G0S2, FABP4, FAT/CD36, LPL, ß-HAD, CS, COX4/1, FAS, SREBP-1c, GPAT1, COX-2, 15-LO, and NFκß were determined by using real-time PCR and Western Blot. The level of lipids (i.e., TG, diacylglycerol (DG), and FFA) was examined by GLC. We demonstrated that in myocardium coronary atherosclerosis increases only the transcript level of G0S2 and FABP4. Most importantly, ATGL, ß-HAD, and COX4/1 protein expression was reduced and it was accompanied by over double the elevation in TG content in the CAD group. The fatty acid synthesis and their cellular uptake were stable in the myocardium of patients with CAD. Additionally, the expression of proteins contributing to inflammation was increased in the myocardium of patients with coronary stenosis. Finally, in the perivascular adipose tissue, the mRNA of G0S2 was elevated, whereas the protein content of FABP-4 was increased and for COX4/1 diminished. These data suggest that a reduction in ATGL protein expression leads to myocardial steatosis in patients with CAD.


Assuntos
Tecido Adiposo/metabolismo , Doença da Artéria Coronariana/metabolismo , Expressão Gênica/genética , Coração/fisiologia , Lipólise/genética , Miocárdio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Lipase/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo
15.
J Transl Med ; 17(1): 310, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533725

RESUMO

BACKGROUND: Adipokines in serum derive mainly from subcutaneous and visceral adipose tissues. Epicardial adipose tissue (EAT), being a relatively small but unique fat depot, probably does not make an important contribution to systemic concentrations of adipokines. However, proximity of EAT to cardiac muscle and coronary arteries allows cells and proteins to penetrate between tissues. It is hypothesized that overexpression of proinflammatory cytokines in EAT plays an important role in pathophysiology of the heart. The aim of the study was to analyze the relationship between echocardiographic heart parameters and adipokines in plasma, epicardial, and subcutaneous fat in patients with obesity and type 2 diabetes mellitus (T2DM). Additionally, we evaluate proinflammatory properties of EAT by comparing that depot with subcutaneous adipose tissue. METHODS: The study included 55 male individuals diagnosed with coronary artery disease (CAD) who underwent planned coronary artery bypass graft. Plasma concentrations of leptin, adiponectin, resistin, visfatin, apelin, IL-6, and TNF-α, as well as their mRNA and protein expressions in EAT and subcutaneous adipose tissue (SAT) were determined. RESULTS: Obesity and diabetes were associated with increased leptin and decreased adiponectin plasma levels, higher protein expression of leptin and IL-6 in SAT, and higher visfatin protein expression in EAT. Impaired left ventricular (LV) diastolic function was associated with increased plasma concentrations of leptin, resistin, IL-6, and adiponectin, as well as with increased expressions of resistin, apelin, and adiponectin in SAT, and leptin in EAT. CONCLUSIONS: Obesity and T2DM in individuals with CAD have a limited effect on adipokines. Expression of adipokines in EAT and SAT is linked to certain heart parameters, however diastolic dysfunction of the LV is strongly associated with circulating adipokines.


Assuntos
Adipocinas/sangue , Ventrículos do Coração/metabolismo , Pericárdio/metabolismo , Gordura Subcutânea/metabolismo , Eletrocardiografia , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Pericárdio/diagnóstico por imagem , Pericárdio/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Regressão , Volume Sistólico
16.
Int J Mol Sci ; 20(10)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137663

RESUMO

The aim of the present study was to investigate the time and intensity dependent effects of exercise on the heart components of the lipolytic complex. Wistar rats ran on a treadmill with the speed of 18 m/min for 30 min (M30) or 120 min (M120) or with the speed of 28 m/min for 30 min (F30). The mRNA and protein expressions of the compounds adipose triglyceride lipase (ATGL), comparative gene identification-58 (CGI-58), G0/G1 switch gene 2 (G0S2), hormone sensitive lipase (HSL) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) were examined by real-time PCR and Western blot, respectively. Lipid content of free fatty acids (FFA), diacylglycerols (DG) and triacylglycerols (TG) were estimated by gas liquid chromatography. We observed virtually no changes in the left ventricle lipid contents and only minor fluctuations in its ATGL mRNA levels. This was in contrast with its right counterpart i.e., the content of TG and DG decreased in response to both increased duration and intensity of a run. This occurred in tandem with increased mRNA expression for ATGL, CGI-58 and decreased expression of G0S2. It is concluded that exercise affects behavior of the components of the lipolytic system and the lipid content in the heart ventricles. However, changes observed in the left ventricle did not mirror those in the right one.


Assuntos
Ventrículos do Coração/metabolismo , Lipólise , Esforço Físico , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Ácidos Graxos não Esterificados/metabolismo , Lipase/genética , Lipase/metabolismo , Masculino , Especificidade de Órgãos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Wistar , Esterol Esterase/genética , Esterol Esterase/metabolismo , Triglicerídeos/metabolismo
17.
Nutrition ; 63-64: 126-133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30959381

RESUMO

OBJECTIVES: Adipose tissue plays a central role in the pathogenesis of insulin resistance (IR) and type 2 diabetes. However, the molecular changes that promote these diseases are not completely understood. Several studies demonstrated that ceramide (Cer) and diacylglycerol (DAG) accumulation in muscle is associated with IR. The aim of this study was to explain whether a high-fat diet (HFD) leads to bioactive lipid accumulation in adipose tissue and how metformin affects the lipid content in adipocytes and the concentration of plasma adipocytokines. METHODS: The experiments were conducted on male Wistar rats divided into three groups: control, HFD-fed, and HFD-fed and treated with metformin. Cer and DAGs were analyzed by liquid chromatography tandem mass spectrometry. Phosphorylation of hormone-sensitive lipase (HSL) was analyzed by Western blot. Oral glucose tolerance and insulin tolerance tests were also performed. Plasma adiponectin and tumor necrosis factor (TNF)-α concentration were measured by enzyme-linked immunosorbent assay. RESULTS: HFD induced IR and elevated DAGs and Cer content in subcutaneous and visceral adipose tissues, which was accompanied by an increased phosphorylation of HSL. Metformin improved insulin sensitivity, decreased Cer and DAG levels, and attenuated the phosphorylation of HSL in both fat depots. Furthermore, we observed a strong correlation between adiponectin (negative) and TNF-α (positive) and bioactive lipids in both fat tissues. CONCLUSIONS: These results indicated that bioactive lipids accumulation in adipose tissue influences the induction of IR and, at least in part, answered the question of what the insulin-sensitizing effect of metformin at the level of adipose tissue is.


Assuntos
Adipocinas/sangue , Tecido Adiposo/metabolismo , Hipoglicemiantes/farmacologia , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metformina/farmacologia , Animais , Ceramidas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Diglicerídeos/metabolismo , Teste de Tolerância a Glucose , Insulina/sangue , Masculino , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Esterol Esterase/efeitos dos fármacos
18.
J Cell Physiol ; 234(2): 1851-1861, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30067865

RESUMO

Liver, as one of the most important organs involved in lipids and glucose metabolism, is perceived as a key tissue for pharmacotherapy of insulin resistance (IRes) and type 2 diabetes. Ceramides (Cer) are biologically active lipids, which accumulation is associated with the induction of muscle IRes. We sought to determine the role of intrahepatic bioactive lipids production on insulin action in liver of insulin-resistant rats and after myriocin administration. The experiments were conducted on male Wistar rats divided into three groups: Control, fed high-fat diet (HFD), and fed HFD and treated with myriocin (HFD/Myr). Before sacrifice, the animals were infused with a [U-13 C]palmitate to calculate lipid synthesis rate by means of tracer incorporation technique in particular lipid groups. Liver Cer, diacylglycerols (DAG), acyl-carnitine concentration, and isotopic enrichment were analyzed by LC/MS/MS. Proteins involved in lipid metabolism and insulin pathway were analyzed by western blot analysis. An OGTT and ITT was also performed. HFD-induced IRes and increased both the synthesis rate and the content of DAG and Cer, which was accompanied by inhibition of an insulin pathway. Interestingly, myriocin treatment reduced synthesis rate not only of Cer but also DAG and improved insulin sensitivity. We conclude that the insulin-sensitizing action of myriocin in the liver is a result of the lack of inhibitory effect of lipids on the insulin pathway, due to the reduction of their synthesis rate. This is the first study showing how the synthesis rate of individual lipid groups in liver changes after myriocin administration.


Assuntos
Glicemia/efeitos dos fármacos , Ceramidas/metabolismo , Dieta Hiperlipídica , Inibidores Enzimáticos/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Resistência à Insulina , Insulina/sangue , Fígado/efeitos dos fármacos , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Humanos , Fígado/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ratos Wistar , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/metabolismo , Transdução de Sinais
19.
Int J Mol Sci ; 19(12)2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30545025

RESUMO

Ceramide accumulation in muscle and in liver is implicated in the induction of insulin resistance. Much less in known about the role of ceramide in adipose tissue. The aim of the present study was to elucidate the role of ceramide in adipose tissue and to clarify whether lipids participate in the regulation of adipocytokine secretion. The experiments were performed on male Wistar rats divided into three groups: 1. Control, 2. fed high fat diet (HFD), and 3. fed HFD and treated with myriocin. Ceramide (Cer) and diacylglycerol (DAG) content were analyzed by LC/MS/MS. Hormone sensitive lipase (HSL) phosphorylation was analyzed by Western Blot. Plasma adiponectin and tumor necrosis factor alpha (TNF-α) concentration were measured by enzyme-linked immunosorbent assay. An oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) was also performed. In HFD group, total DAG and Cer content was elevated in both subcutaneous and visceral adipose tissue, which was accompanied by increased glucose, insulin, and HOMA-IR value. Myriocin treatment restored HOMA-IR as well as glucose and insulin concentration to control values. Moreover, myriocin decreased not only Cer, but also DAG levels in both fat depots. Furthermore, we observed a strong correlation between adiponectin (negative) and TNF-α (positive) and Cer in both fat tissues, which suggests that Cer is involved in the regulation of adipocytokine secretion.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Ceramidas/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Diglicerídeos/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Teste de Tolerância a Glucose , Resistência à Insulina , Masculino , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Esterol Esterase/metabolismo , Espectrometria de Massas em Tandem
20.
Sci Rep ; 8(1): 7249, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739997

RESUMO

We sought to determine whether metformin treatment reverses a high-fat diet (HFD)-induced hepatic insulin resistance (IRes) and to identify lipid intermediates involved in induction of liver IRes. The experiments were conducted on male Wistar rats divided into three groups: 1. Control, 2. fed HFD and 3. fed HFD and treated with metformin. The animals were infused with a [U-13C]palmitate to measure fractional lipid synthesis rate. This allowed for the calculation of fractional synthesis rate of signaling lipids (FSR) through the estimation of their isotopic enrichment. Liver ceramide (Cer), diacylglycerol (DAG) and acyl-carnitine concentration and enrichment were analyzed by LC/MS/MS. The content of proteins involved in lipid metabolism and insulin signaling were analyzed by Western Blot. HFD treatment increased the content and FSR of DAG and Cer in the liver which was accompanied by systemic insulin resistance and inhibition of hepatic insulin signaling pathway under insulin stimulation. Metformin treatment ameliorated systemic insulin resistance and augmented the hepatic insulin signaling cascade. It reduced both the concentration and FSR of Cer, DAG, and increased acyl-carnitine content and the expression of mitochondrial markers. We postulate, that in liver, the insulin sensitizing effect of metformin depends on augmentation of mitochondrial ß-oxidation, which protects from hepatic accumulation of both the Cer and DAG and preserves insulin sensitivity under HFD consumption. Moreover, we showed that hepatic content of Cer and DAG corresponds with their respective FSR.


Assuntos
Fígado Gorduroso/tratamento farmacológico , Fígado/efeitos dos fármacos , Metformina/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Animais , Glicemia , Ceramidas/isolamento & purificação , Ceramidas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Diglicerídeos/isolamento & purificação , Diglicerídeos/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Humanos , Resistência à Insulina/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Músculo Esquelético/patologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...