Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuromolecular Med ; 25(1): 120-124, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35857254

RESUMO

Transfer of healthy mitochondria from mesenchymal stem cells (MSCs) to ischemic neurons represents a potent stroke therapeutic. MSCs were grown under ambient conditions (nMSCs) or a metabolic switching paradigm by alternating galactose and glucose in medium (sMSCs) and then assayed for oxygen consumption rates using the Seahorse technology. Subsequently, primary neurons were subjected to oxygen glucose deprivation (OGD) and then co-cultured with either nMSCs or sMSCs. Compared to nMSCs, sMSCs displayed higher basal energy production, larger spare respiratory capacity, greater ATP production, and decreased proton leak. Co-culture of OGD-exposed neurons with sMSCs conferred greater cell viability, enhanced cell metabolism, reduced mitochondrial reactive oxidative species mRNA, and elevated mitochondria ATP mRNA than those cultured with nMSCs. Metabolic switching produces "super" mitochondria that may underlie the therapeutic benefit of using sMSCs to treat ischemic cells.


Assuntos
Células-Tronco Mesenquimais , Mitocôndrias , Células Cultivadas , Mitocôndrias/metabolismo , Oxigênio , Trifosfato de Adenosina/metabolismo , Neurônios/metabolismo , RNA Mensageiro , Glucose/metabolismo
2.
Dev Dyn ; 252(1): 124-144, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36284453

RESUMO

BACKGROUND: Proper connectivity between type I spiral ganglion neurons (SGNs) and inner hair cells (IHCs) in the cochlea is necessary for conveying sound information to the brain in mammals. Previous studies have shown that type I SGNs are heterogeneous in form, function and synaptic location on IHCs, but factors controlling their patterns of connectivity are not well understood. RESULTS: During development, cochlear supporting cells and SGNs express Semaphorin-3A (SEMA3A), a known axon guidance factor. Mice homozygous for a point mutation that attenuates normal SEMA3A repulsive activity (Sema3aK108N ) show cochleae with grossly normal patterns of IHC innervation. However, genetic sparse labeling and three-dimensional reconstructions of individual SGNs show that cochleae from Sema3aK108N mice lacked the normal synaptic distribution of type I SGNs. Additionally, Sema3aK108N cochleae show a disrupted distribution of GLUA2 postsynaptic patches around the IHCs. The addition of SEMA3A-Fc to postnatal cochleae led to increases in SGN branching, similar to the effects of inhibiting glutamate receptors. Ca2+ imaging studies show that SEMA3A-Fc decreases SGN activity. CONCLUSIONS: Contrary to the canonical view of SEMA3A as a guidance ligand, our results suggest SEMA3A may regulate SGN excitability in the cochlea, which may influence the morphology and synaptic arrangement of type I SGNs.


Assuntos
Células Ciliadas Auditivas , Semaforina-3A , Animais , Camundongos , Cóclea/metabolismo , Neurônios/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Gânglio Espiral da Cóclea/metabolismo
3.
Neuroreport ; 33(15): 635-640, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36126260

RESUMO

OBJECTIVE: Strokes represent as one of the leading causes of death and disability in the USA, however, there is no optimal treatment to reduce the occurrence or improve prognosis. Preconditioning of tissues triggers ischemic tolerance, a physiological state that may involve a metabolic switch (i.e. from glycolysis to oxidative phosphorylation or OxPhos) to preserve tissue viability under an ischemic insult. Here, we hypothesized that metabolic switching of energy source from glucose to galactose in cultured mesenchymal stem cells (MSCs) stands as an effective OxPhos-enhancing strategy. METHODS: MSCs were grown under ambient condition (normal MSCs) or metabolic switching paradigm (switched MSCs) and then assayed for oxygen consumption rates (OCR) and extracellular acidification rate (ECAR) using the Seahorse technology to assess mitochondrial respiration. RESULTS: Normal MSCs showed a lower OCR/ECAR ratio than switched MSCs at baseline (P < 0.0001), signifying that there were greater levels of OxPhos compared to glycolysis in switched MSCs. By modulating the mitochondrial metabolism with oligomycin (time points 4-6), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (7-9), and rotenone and antimycin (time points 10-12), switched MSCs greater reliance on OxPhos was further elucidated (time points 5-12; P < 0.0001; time point 4; P < 0.001). CONCLUSION: The metabolic switch from glycolytic to oxidative metabolism amplifies the OxPhos potential of MSCs, which may allow these cells to afford more robust therapeutic effects against neurological disorders that benefit from ischemic tolerance.


Assuntos
Células-Tronco Mesenquimais , Fosforilação Oxidativa , Galactose/metabolismo , Glucose/metabolismo , Glicólise/fisiologia , Células-Tronco Mesenquimais/metabolismo , Oligomicinas/metabolismo , Rotenona/farmacologia
4.
Neurobiol Dis ; 126: 85-104, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30219376

RESUMO

Age-related neurological disorders continue to pose a significant societal and economic burden. Aging is a complex phenomenon that affects many aspects of the human body. Specifically, aging can have detrimental effects on the progression of brain diseases and endogenous stem cells. Stem cell therapies possess promising potential to mitigate the neurological symptoms of such diseases. However, aging presents a major obstacle for maximum efficacy of these treatments. In this review, we discuss current preclinical and clinical literature to highlight the interactions between aging, stem cell therapy, and the progression of major neurological disease states such as Parkinson's disease, Huntington's disease, stroke, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and multiple system atrophy. We raise important questions to guide future research and advance novel treatment options.


Assuntos
Envelhecimento , Terapia Baseada em Transplante de Células e Tecidos/métodos , Doenças do Sistema Nervoso/terapia , Animais , Terapia Baseada em Transplante de Células e Tecidos/tendências , Humanos , Células-Tronco
5.
Prog Neurobiol ; 172: 23-39, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447256

RESUMO

Soluble epoxide hydrolase (sEH) degrades epoxides of fatty acids including epoxyeicosatrienoic acid isomers (EETs), which are produced as metabolites of the cytochrome P450 branch of the arachidonic acid pathway. EETs exert a variety of largely beneficial effects in the context of inflammation and vascular regulation. sEH inhibition is shown to be therapeutic in several cardiovascular and renal disorders, as well as in peripheral analgesia, via the increased availability of anti-inflammatory EETs. The success of sEH inhibitors in peripheral systems suggests their potential in targeting inflammation in the central nervous system (CNS) disorders. Here, we describe the current roles of sEH in the pathology and treatment of CNS disorders such as stroke, traumatic brain injury, Parkinson's disease, epilepsy, cognitive impairment, dementia and depression. In view of the robust anti-inflammatory effects of stem cells, we also outlined the potency of stem cell treatment and sEH inhibitors as a combination therapy for these CNS disorders. This review highlights the gaps in current knowledge about the pathologic and therapeutic roles of sEH in CNS disorders, which should guide future basic science research towards translational and clinical applications of sEH inhibitors for treatment of neurological diseases.


Assuntos
Fármacos do Sistema Nervoso Central/farmacologia , Doenças do Sistema Nervoso Central/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Animais , Fármacos do Sistema Nervoso Central/uso terapêutico , Doenças do Sistema Nervoso Central/enzimologia , Inibidores Enzimáticos/uso terapêutico , Epóxido Hidrolases/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...